

LED calibration systems for CALICE hadron calorimeter

Jiri Kvasnicka, Ivo Polak Institute of Physics (FZU), Prague

- The CALICE 1m³ HCAL prototype
- Calibration solution for CALICE AHCAL (DESY, FZU)
- Embedded calibration solution (DESY, Wuppertal)
- Quasi-resonant LED driver (FZU)
- Optical fiber light distribution (FZU)

AHCAL 1m³ Physics prototype

SCINIIIAIOS MIN ECAL

- The AHCAL 1m³ CALICE collaboration
 - built in 2005
 - Testbeams 2006-2011 at CERN and FNAL.
 - Now in CERN as WHCAL with tungsten absorber
 - Tested together with ECAL (electromagnetic calorimeter) and TCMT (Tail Catcher and Muon Tracker)
- 38 layers, 2cm Fe absorbers
- 7608 photo detectors (SiPM) in total
- One layer
 - 216 scintillator tiles with SiPMs, 3x3, 6x6, 12 x 12 cm2
 - Calibrating system (CMB) with 12 LEDs monitored by PIN-Photo Diodes
 - Optical flash is distributed by fiber bundle individually to each scintillator
 - 5 temperature sensors per layer integrated circuits LM35
- Scintillating tile
 - 5mm thick Scintillator
 - WLS (wavelength shifting fiber), ~380nm→~500nm)
 - SiPM photodetector attached to the WLS fiber + mirror
- SiPM (silicone photomultiplier)
 - 1156 pixels (avalanche photodiode), each works in Geiger mode
 - Fixed charge per pixel
 - Gain of SiPM has large spread ~0.5·10⁶ to 2·10⁶

Calibration Chain: ADC to MIP

AHCAL signal chain:

Particle → MIPs → Scintillating tile → photons (UV) → Wavelength-shifting fiber → photons (green) → SiPM → Photo-electrons → ASIC readout

Calibration task:

Convert the detector signal to a number of MIP deposited by the particle

- Calibration possibilities:
 - LED light
 - Charge injection (ASIC ADC calibration)
 - Cosmic muons
 - Other means, not used: laser, radioactive source
- Key parameters factors of SiPM:
 - SiPM gain (from Single Photon Spectrum)
 - Temperature (gain factor ~-2% per 1K)
 - Voltage applied
 - Saturation function

Calibration and Monitoring Board (CMB)

- Developed by **DESY** and **FZU** for the CALICE AHCAL 1m³ prototype
- CMB consists of:
 - 12 UV LEDs, each LED illuminates 18 Scintillating tiles
 - 12 pin-photodiodes preamplifier (LED feedback)
 - Light flash is steerable in width (2~100 ns) and amplitude
 - Controlled externally by CANbus, T-calib (LVDS trigger) and V-calib (differential analog signal)
 - Temperature readout, sensors all over the module
- Used both for gain and saturation corrections

LED driver on CMB

- The LED is driven differentially
- The key component is an IC IXLD02, a LED driver from IXIS company
- Reverse voltage is applied right after the pulse → LED stops to shine immediately
- Disadvantage: RFI (radio frequency interference) due to the sharp edges

CMB results

- CMB worked well for the 1m3 HCAL phys. prototype (2005-2011, from 2010 with Tungsten: WHCAL)
- Used for
 - Low intensity: the Single Photon Spectrum (gain calibration)
 - High intensity: SiPM saturation
 - Temperature measurements (for corrections)

The engineering AHCAL prototype

The Engineering prototype aims to find solution for hadron calorimeter in real ILD detector

Octagonal structure,
16 equivalent wedges,
2 barrels attached subsequently
~8·10⁶ channels in total

HBU: PCB 36x36 cm 144 scintillating tiles with **SiPM** 4 ASICs for **integrated readout**

2 calibration systems:

- Integrated (distributed)
- External via optical fiber

Integrated LED system

- Developed by **DESY** and **Uni Wuppertal** (Mathias Goetze, Julian Sauer, Sebastian Weber)
- Each tile has its through-hole mounted LED with its own driver.
 - Compact circuitry
 - Operation: The current pulse though the LED is generated by discharging of the Capacitor by a fast transistor
 - V-calib signal range: 3–10 V covering both
 Single Photon Spectrum and saturation
- Choice of the LED is critical for this driver
 - Several different LED types were tested
 - The internal capacitance of the LED is most important
 - Only Single-quantum-well LEDs work well (usually UV-LED)
 - Usual (multi-quantum-well) LEDs have too big capacitance and produce longer optical pulse. On the other hand, they are very bright

Integrated LED system – Optimization

- Pulse of the Blue LED (~40 ns) and the UV LED (~5 ns) with the current circuit on HBU0
- Proof of the capacitance dependency: Light pulse width re-measured with a differential driver
 - In this mode: LED is reverse biased, then for a short pulse forward biased and directly reverse biased again
 - The reverse voltage helps to discharge the LED
 - Blue LED stops shining much faster in differential mode
- Optimization process: measurements with key components variation

Integrated LED system – SPS

- For longer (>30 ns) pulses, both UV and Blue LEDs produce equal optical pulses
- Question: is short pulse necessary?
 - Answer: Yes, only 15 ns pulses and faster produce decent Single Photon Spectra
- Single Photon Spectrum (SPS)
 - The number of visible (fittable) peaks is a key indicator of the quality
 - The more peaks are visible, the easier is the system task to generate SPS for all channels (different LEDs and SiPMs)
 - Quality spectrum → less statistics required
 - Short pulse -> improvement of the quality
 - Nice spectrum with UV-LED
 - Spectrum is more smeared with 30 ns blue-LED
- Driver circuitry is now optimized and being manufactured on the new HBU for the technological prototype

Integrated LED system – Light Yield

- The saturation curve is not an pure $f(x) = N\left(1 e^{-\frac{x}{N}}\right)$ function. The reason could be the light distribution and coverage from the WLS fiber.
- Circuitry was finally tuned to deliver up to 17K effective pixels in saturation mode
 - Light referenced to PMT signal
 - Light pulse gets wider with increasing intensity (>20ns)
- Time behavior of Scintillation tile
 - Measured with PMT
 - Without tile: sharp pulse
 - With tile (and Wavelength shifting fiber) → long tail

External calibration system - QMB6

- New idea of driving the LED by a quasi-sine wave
- The board has 6 Quasi-resonant LED drivers, developed in 2008/2009
- Microcontroller with CANbus control
- Voltage and temperature monitoring
- Operation: the transistor shorts the coil to ground
 → energy is stored in coil → transistor go off → the
 current still go through the coil → Voltage (point A)
 flies up and the energy is transferred to the
 capacitor
- The resonance of the capacitor and coil is heavily dumped by a resistor (RD) → only the first wave overcomes the control voltage V2, which forces the current to flow through the LED

QMB6 performance

- Very nice single photon spectrum (due to <3.5 ns pulse)
- Nice saturation curves (all 12 SiPMs illuminated by 1 LED)
- We did a test in 4T magnetic field with a minimal effect (<1%) on operation
- Dynamic range up to 200 MIPs per position
- LED optical power up to 0.4 nJ per pulse

Light yield of 5mm and 3mm LEDs

3mm LED, Estimated number of fired pixels, single PE peak distance & ASIC gain compensated

June 11, 2011

TIPP 2011, Kvasnicka

Distribution of light: Notched Fiber

- Light is emitted from the notches
- The notch is a special scratch to the fiber, which reflects the light to the opposite direction
- The size of the notch varies from the beginning to the end of the fiber to maintain homogeneity of the light, which comes from notches

Optical fiber: performance

- We have measured several hand-made notched fiber:
 - 72 notches: tolerance within 20%
 - 24 notches: tolerance within 15%
 - 12 notches: tolerance within 10%
- We had a measurement mismatch with a fiber producer

 We discovered, that the measurement methodology is crucial
- Latest measurements of the light yield
 - Through the 3mm hole on the PCB (FR4 with filled inner layer)
 - 3 positions of the notch according to the PCB thru-hole

notch [id]

Development of new Quasi-resonant LED driver (QMB1)

- QMB1 (1-chanel LED driver):
 - Status: PCB layout
- Semi-automatic notch-fiber machine under development
- Set: 3*fiber with 24 notches, creating a line of 72 notches. The set is illuminated by a single LED

Conclusions

- Calibration and monitoring is very important for calorimeters based on SiPMs
- CALICE HCAL physics prototype experience with SiPM calibration (CMB boards)
- Integrated LEDs and drivers are now being produced in a new version.
 - Pulse length was shortened to ~8ns
 - New SMD UV LED incorporated
- Quasi-resonant LED driver was tested on 6-channel board (QMB6)
 - Produce very short pulses ~3.5 ns
 - Enough power to saturate a row of 12 SiPMs
- New Quasi resonant driver is being developed
 - Pulse length extended to ~5ns
- Test with notched fiber and different fiber configuration
 - Proven, that it is possible to manufacture a 72-notched fiber with 20% tolerance

Backup

Outline

- CALICE prototype
- SiPM motivation (SiPM issues, temperature drift..)
- AHCAL 1m³ calibration solution (DESY, FZU)
 - Electronics solution
 - performance
- Embedded calibration solution (DESY, Wuppertal)
 - Electronics solution
 - Performance
- Quasi-resonant LED driver (FZU)
 - Electronics solution
 - Performance
- Optical fiber light distribution
- Conclusion

Light coupling

Test setup

Full saturation and gain scan

Flashing at 500kHz frequency

Illumination through the alignment pins of the tile

Light yield over V1 and V2 variation

