

# ECAL and HCAL EUDET Prototypes



#### Jaroslav Zalesak Institute of Physics of the ASCR, Prague

Nov 18, 2008 LCWS 2008

**EUDET status** 

1

#### ic **Proof of Principle → Reality**











□ Anticipated physics at ILC: unprecedented jets energy resolution (possibility of detection particle tracks and energies in jets)

EM and Hadronic calorimeters



# **ECAL EUDET Prototype**



- Logical continuation to PPT → validated the main concepts: alveolar structure, slabs, gluing of wafers, integration
- Tech Prototype: study and validation of most of technological solutions for final detector (moulding process, cooling system, wide size structures,...)







# **ECAL: Si Wafers**



- Active sensors PIN diodes matrix Si (5kΩ.cm) wafers
  - compromise between granularity and integration capability (and overall cost)
- 30 wafers from Hamamatsu
  - 90x90 mm<sup>2</sup> wafer size
  - 5x5 mm<sup>2</sup> cell size => 324 cells/wafer
  - 330  $\,\mu m$  thickness ( x PPT: 500  $\,\mu m,\,1x1$   $cm^2)$
- Start to study guarding effects (X-talk coupling)
  - TB measured data: show some sq. pattern (particle in guarding)
  - Idea: cut g.r. into small segments (avoiding along propagation)
- Gluing simply to PCB (A.S.U. ← 16 r/o chips for 4 wafers)
  - Checking of current leakage w.r.t. electronics after gluing
  - glue dots matrix (min. glue thickness ~100 µm) to integrate
  - Bias voltage distribution (~200 V, each wafer individually)
    - flag shaped film (Kapton, 100 µm space)

Type of Wafers can be used for EUDET Prototype However, continue to study proposals by other manufacturers



#### ilc **SPIROC – ASIC r/o chips**



- Front-end electronics requirements:
  - 64 channels for 5x5 mm2 pads...
  - Auto-trigger (MIP/Noise),
  - 2-gains / 12-bit ADC  $\rightarrow$  2000 MIP
  - Power pulsing
  - DAC for trig threshold
  - Output/Control daisy-chain compatible



- 3 main modes required by beam struct.
  - Acquisition
    - charge stored in analogue memory
  - A/D conversation
    - multi channel digitalization
  - DAQ
    - allows DAQ to output data
    - serial r/o daisy chain





## A.S.U. and Readout

#### Long slab is made by several short PCBs:

'end" PCB

→ DAQ

A.S.U.: Active Sensors Unit – FE PCB – interface between FEE (embedded chips with bonded wires) and detector (Si Wafers)

- 2 active readout layers (7 interconnected ASUs) put on top and bottom side of H-structure of the slab)
- Designed of interconnection "inside" PCB < 1mm</p>

 $\rightarrow$  capable to rework w/o damaging of sensors

realize electrical paths along slabs:

LV, clocks & fast control, slow control,

r/o data, monitoring

#### Unity of Chips, PCB and Si Wafers





Short sample 8 chips

Connection between 2 A.S.U. (FFC-bridge)

7 A.S.U.



Nov 18, 2008 LCWS 2008 **EUDET** status



# **HCAL EUDET Task**



- Calorimeter proposal follow PFA detection particle track and energy in jets
- → High energy resolution and granularity
- → HCAL: cylindrical sandwich structure w/ 38 layers (radius 2.0 m and 3.1 m)
- EUDET Goal: a realistic absorber structure for tests of novel readout techniques
- Realistic: compact and scalable
  - Compact: minimum dead space and minimum active layer thickness
  - → Small scintillating tiles w/ embedded r/o (MGPD)
  - → FEE to be highly integrated inside layers
  - Height / length of barrel: 6.4 m / 4.6 m
  - Weight of one module: ≈ 19 t
  - Weight of HCAL: ≈ 600 t
  - Weight of HCAL + cassettes + ECAL : ≈ 900 t



Nov 18, 2008 LCWS 2008



### **Mechanical Integration**



⇒ 3 mm side panel

⇒ M6 screw size

Mechanical design of absorber structure: minimize dead material

➔ Slim support structure

**Disadvantages** 

- Uncertainties regarding stability
- High tolerance requirements (for active layers)

#### **FEM calculations**

- first analysis of mechanical stability

Bending of absorber plates for different fixing schemes



# **Electronics integration**

- Goal: fully exploit the potential of
  - Embedded photo-sensors  $\rightarrow$  embedded front end electronics
  - Similarities between highly granular ECAL and highly granular HCAL options; channel densities not so different
  - State-of-the art micro-electronics integration and power pulsing
- Common architecture for ECAL and HCAL (different FEE, same downstream, DAQ)





#### ilr **Next prototype: Architecture** İİİ

#### HCAL Base Unit (HBU0)

- Integration concept fixed



Cassette fixation

**Mechanics** Tile



#### **Calibration system**

- Non-linearity correction, MIP calibration, Correction temperature variations
- Use gain monitoring, adjust voltage  $\rightarrow$  see G. Eigen's talk
- Many procedures developed during last year's analysis, but not finally proven yet
- Stability of saturation still an issue -> need dynamic range
- Two appr.: electrical or optical signal distribution One LED / one tile or central driver plus fibres
- Differences inside the active gap, but same external interfaces

#### **Option 2: LED driver**

- Electronics: multi-channel prototype complete
- Optical system: uniformity again competitive
  - Integration into active layer still an open issue
- Multichannel LED driver
  - 1 PCB with the communication module µC, power regulator, 6 channels of QRLed driver
  - Communication module to PC via CAN bus or I2C
  - Controlling the amplitude and monitoring temperature and voltages
  - LED pulse width ~ 5 ns fixed, tunable amplitude up to 50-100 MIPs is controlled by the V-calib signal
  - 2 LEDs can be monitored by a PIN photodiode





# ic Option 2: Optical system

Notched fiber:

20

30

40

Point

50

60

70

10

24.0

22.0

20.0

16.0

14.0 12.0

10.0

<u>역</u> 18.0 보

- Idea: use one fiber for one row of tiles (72)
- Problems:
  - uniformity of distributed light
  - enough intensity of distributed light
  - concentration of LED light into one fiber
- Two fibres:
  - Side-emitting exponential fall of intensity
  - Notched fibre better uniformity of distributed light - need to mechanize production - R&D



Nov 18, 2008 LCWS 2008

**EUDET status** 







DAQ software

Off Detector Receiver (ODR)

Link Data Aggregator (LDA)

Detector Interface (DIF)

**Detector Unit** 





### **Power pulsing**

- No active cooling system for in-electronics in gaps of absorbers (compactness, cost,..)
- → restriction to the power dissipation of E/HCAL electronics (ASICs,..)
- ← advantage for power balance: ILC bunch structure
- → switching-off not needed in-detector electronics → 1% effective switched-on time







-EUDET Prototype is logical continuation of CALICE ECAL and HCAL Prototype

- Next steps towards ILC Detector Module
- Addresses technological challenges of detector construction
- Large scale integration
- Power consumption
- Most of the items of the construction process are under control
- Electronics is extremely challenging
  - Analog and digital part on one chip
  - Limited space for PCB
- Start of construction phase



# **Backup slides**

Nov 18, 2008 LCWS 2008

**EUDET** status

17

# **Calibration system**

- Non-linearity correction: test with electron data
- MIP calibration: in test beam data, explore use of MIP segments in hadron showers

ĪĪĻ

- Correct for temperature-induced variations
  - Use T-sensors and dependence:
- Use gain monitoring, adjust voltage



- Many procedures developed during last year's analysis, but not finally proven yet
- Stability of saturation still an issue -> need dynamic range
- Two approaches: electrical or optical signal distribution
  - One LED / one tile or central driver plus fibres
- Differences inside the active gap, but same external interfaces

#### **Option 1: embedded LEDs** İİİ

- Electronic signal distribution
- Setup of LED Test system has started:
  - Optimization of LED position
  - Control of homogeneity of response —
  - Test of different LED types foreseen \_
  - System will be suitable to compare light calibration with "real" particle response from radioactive source
  - System will be temperature controlled
- Tested, no cross-talk to sensors seen
- To be optimized: dynamic range, LED uniformity





. Dooooooooooooooooo





## **Option 2: LED driver**

- Option with optical distribution
- Electronics: multi-channel prototype complete
- Optical system: uniformity again competitive
  - Integration into active layer still an open issue
- Multichannel LED driver
  - 1 PCB with the communication module  $\mu C,$  power regulator, 6 channels of QRLed driver
  - Communication module to PC via CAN bus or I2C
  - Controlling the amplitude and monitoring temperature and voltages
  - LED pulse width ~ 5 ns fixed, tunable amplitude up to 50-100 MIPs is controlled by the V-calib signal <sup>+12V</sup>
  - 2 LEDs can be monitored by a PIN photodiode



**QRLED 6** 

calib

μC

AT91SA M7X256

///

LED<sub>6</sub>

Е

S

////