

Calibration of the Hadronic Calorimeter Prototype for the CALICE Experiment

Jaroslav Zalesak, for the CALICE Collaboration

Institute of Physics of the Academy of Science, Prague, Czech Republic

The CALICE Experiment

Beam test of the calorimeters optimized for the particle flow (PFA) at the future ILC

- SiW electromagnetic calorimeter (ECAL)
- Scintillator-Fe hadronic calorimeter (Analogue HCAL)
- Scintillator-Fe tail catcher (TCMT)

- Anticipated physics at ILC: unprecedented jets energy resolution Promising candidate to achieve this goal is PFA (possibility of detection particle tracks and energies in jets)
 - based on high granularity of *EM and Hadronic calorimeters*

Scintillators

- *Test beam campaigns at CERN (2006, 2007)* and FNAL (2008, 2009)
- Different particle species: e[±], π[±], p, μ
- Wide range of energies: 1 GeV to 180 Rotation up to 30°

The Scintilator Tile AHCAL

- 1 m³ instrumented, 4.5 λ deep 38 layers, 2 cm Fe absorber plates
- 7608 channels with individual readout
- <u>One active layer:</u> 216 scintillator tiles, size 3x3 to 12x12 cm², highest granularity in the center (10x10 cells)
- UV LED calibration system with 12 LEDs and PIN diodes to monitor LED intensity. Light distribution via clear fibers
- 5 temperature monitoring sensors per layer

One scintillator cell:

Embedded WLS fiber absorbs UV scintillator light (~400nm) and emits green light at 500 nm

<u>Silicon Photomultiplier (SiPM)</u> as a new type of photodetector:

- 1156 pixels, working as avalanche photodiode in Geiger mode
- High gain of ~ 10⁶ at low U_{bias}
- Signal = sum fired pixels ↔ saturation effects

Mean: -0.038 ± 0.0001

RMS: 0.014 ± 0.00012

CALICE Prelimi

-0.08 -0.06 -0.04

100 - data: N. Feege

-0.12 -0.1

ē 600⊦

Temperature & Voltage Dependence

SiPM gain is strong temperature and voltage dependence.

- Significant variations of the detector temperature over the available data set (up to 4 K for some cells)
- Temperature variations over data taking period are substantial
- We need to correct raw energy measurement for T variations
- Calibration system used to monitor T and U induced gain changes

Correction Possibilities:

- LED calibration data to study the gain variations
- Muon data at some temperatures to study amplitudes
- Hadron data (track segments) over the full temperature range

9 1.06

1.02

(1/A) dA/dT [K⁻¹]

Tile I:43 j:46 layer 13

slope = -0.0291 +- 0.0062

28

Temperature [degrees Celsius]

27.5

28.5

Light Calibration System (LCS)

A gain–calibration and –monitoring system (LCS) is needed

due to strong temperature and voltage dependence: dG/dT = -1.7% / K dG/dU = 2.5% / 100mV *New concepts – 2 option under investigation:*

High dynamic range demand:

- at <u>low</u> light intensities:
- distance of single-photon peaks defined gain
- at <u>high</u> light intensities:

SiPm shows saturation behaviour (~100MIPs)

Option1: Embedded LEDs

0 0 0

LED test board realized:

- Ultraviolet LEDs are mounted up-side-down
- Crosstalk is purely optical (coupled tiles: ~2.5%),
- No electrical crosstalk due to good GND system.
- Dynamic range promising

Option 2: LED driver

Option with optical light fiber distribution: Electronics: multi-channel prototype complete Optical system: uniformity again competitive Integration LED pulsing system into active layer

CALICE Preliminary

Option 2: Optical system

Idea: use one fiber for one row of tiles (72)

- Uniformity of distributed light
- Enough intensity of distributed light

no fibers needed for light distribution 2. One strong LED outside detector *light distribution via notched opt. fibers*

1. One LED per tile: integrated into detector gap

Multichannel LED driver:

- I PCB with the communication module μC, power regulator, 6 channels of QRLed driver
- Communication module to PC via CAN bus or I2C
- Controlling the amplitude and monitoring temperature and voltages
- LED pulse width ~ 5 ns fixed, tunable amplitude up to 50-100 MIPs controlled by the V-calib signal 2 LEDs can be monitored by a PIN photodiode

- Concentration of LED light into one fibe
- Two possibilities fibers:
- Side-emitting
- exponential fall of intensity
- Notched fiber
 - better uniformity of distributed light
 - need to mechanize production R&D
- No optical cross talk seen (< 1-2 %):
- No differences at various amplitudes
- no dependence on chosen pair of notches
- and light input direction

ADVANCED STUDIES INSTITUTE: SYMMETRIES AND SPIN Prague, Czech Republic July 26 - August 2, 2009

