ILC Accelerator **Physics Detectors Calorimeters**

Jaroslav Zalesak FZU AV CR

I. Accelerator

International Linear Collider (ILC)

A Vision of the Future RDR to ILC

CMS Energy 500 GeV

Foreseen Upgrade to 1 TeV

Acc. Gradient 31.5 MV/m

Overall Length 31 km

Luminosity 2x10^34 1/cm^2s

Three Generations of e⁺e⁻ Colliders *The Energy Frontier*

31. 11. 2007

ILC Components

- Electron Source (polarization 80%)
- Positron Source (polarization 30 to 60%)
- Damping Rings, 5 Gev
- Main Linacs 50-250 GeV
- Beam Delivery System
- Detectors (push-pull configuration)

GDE -- Designing a Linear Collider

RDR Design Parameters

Max. Center-of-mass energy	500	GeV
Peak Luminosity	~2x10 ³⁴	1/cm ² s
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV/m
Beam pulse length	0.95	ms
Total Site Length	31	km
Number of bunches	~2500	
Total AC Power Consumption	~230	MW

ILC – Global Design Phase

- Our technically driven time-scale is
 - Construction proposal in 2010
 - Construction start in 2012 \rightarrow Construction complete in 2019

ILC Physics Goals

- E_{cm} adjustable from 200 500 GeV
- Luminosity $\rightarrow \int Ldt = 500 \text{ fb}^{-1} \text{ in 4 years}$
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%
- The machine must be upgradeable to 1 TeV

Physics

LHC will open Terascale physics

- Deep significance to fundamental physics
- What is nature of EWSB?
- Are there hidden extra dimensions?
- Are there new symmetries of space and time?
- Dark matter particles

ILC is needed to explore and

- elucidate nature of Terascale
- Deeper look into Terascale questions
- Precision exploration of new physics

Precision Physics at the Terascale

- elementary particles
- well-defined
 - energy,
 - angular momentum
- uses full COM energy
- produces particles democratically
- can mostly fully reconstruct events

Single IR with Push-Pull Detectors

- Large cost saving compared with 2 IR
 - ~200 M\$ compared with 2 IR with crossing angles 14/14 mrad
- Push-pull detectors
 - Task force from WWS and GDE formed
 - But need careful design and R&D
 - For exam, need quick switch-over
 - 2 IR should be kept as an 'Alternative'

Goal of ILC Physics and Detector

- ILC Physics is described in Physics chapter of DCR
- Opportunities of ILC experiments
 - Clean, well-defined initial state,
 - Trigger-less readout
 - Low radiation field
 - ➔ ideal environment for precision studies and sensitive searches for faint new physics
- ILC detector design concentrate on measuring partons with high precision
 - − Quarks/ gamma \rightarrow Good jet energy measurement
 - Leptons (e/m) → tracking
 - − b/c quarks ID \rightarrow Vertexing

Precision Physics at the ILC

- e*e*: background-free but can be complex multijet events
- Includes final states with heavy bosons W, Z, H
- But, statistics limited so must include hadronic decay modes (~80% BR)
 multi-jet events
- In general no kinematic fits -> full event reconstruction

Parton Measurement via Jet Recon

• Calorimeter jet

- Interaction of hadrons with calorimeter.
- Collection of calorimeter cell energies.

• Particle jet

- After hadronization and fragmentation.
- Effect of hadronization is soft ⇒ allows comparison between particle and parton jets.

Parton jet

- Hard scattering.
- Additional showers.

The Particle Flow Approach to Jet Reconstruction

PFA Aim : 1 to 1 correspondence between measured detector objects and particle 4-vectors -> Detector Jet == Particle Jet

- -> combines *tracking* and *3-D imaging calorimetry* :
- good tracking for charged particles (~60% of jet E)
 -> σ_p (tracking) <<< σ_E for photons or hadrons in CAL
- = good EM Calorimetry for photon measurement (~25% of jet E) -> σ_F for photons < σ_F for neutral hadrons
- good separation of neutral and charged showers in E/HCAL
 - -> CAL objects == particles
 - -> 1 particle : 1 object -> small CAL cells
- adequate E resolution for neutrals in HCAL (~13% of jet E)
 - -> $\sigma_{\rm E}$ < minimum mass difference, e.g. $M_{\rm Z}$ $M_{\rm W}$
 - -> still largest contribution to jet E resolution

The PFA Approach and Detector Design

PFA key -> complete separation of charged and neutral
hadron showers $\Delta E_{jet} / E_{jet} = \delta(Tracker) \oplus \delta(EMCAL) \oplus \delta(HDCAL)$

 $\oplus \delta(Acceptance) \oplus \delta(Confusion)$

Requires a calorimeter designed for optimal 3-D hadron (and photon) shower reconstruction :

- -> granularity << shower transverse size (number of "hits")
- -> segmentation << shower longitudinal size ("hits")
- -> digital or analog readout?
- -> dependence on inner R, B-field, etc.

uses optimized PFA to test detector model variations

Jet reconstruction will be crucial to our understanding of physics at the ILC.

-> The PFA approach to jet reconstruction is seen as a way to use the components of an ILC detector in an optimal way, achieving unprecedented mass resolution from dijet reconstruction.

Dependencies on various detector parameters are now being studied, which will ultimately influence our choice of technologies for ILC detector component design – in particular the calorimeters.

Mala Skala - Jaroslav Zalesak

The Detector Concepts

The Concepts

	Tracking	ECal Inner Radius	Solenoid	EM Cal	Hadron Cal	Other
SiD	silicon	1.27 m	5 Tesla	Si/W	Digital (RPC)	Had cal inside coil
LCD	TPC gaseous	1.68 m	4 Tesla	Si/W	Digital or Analog	Had cal inside coil
GLD	TPC gaseous	2.1 m	3 Tesla	W/ Scin.	Pb/ Scin.	Had cal inside coil
4th	TPC gaseous	1.4 m	3.5/1.5	crystal	Multi-fiber readout	Double Solenoid

IV. LDC detedtor

Detector Concept for the ILC

- Four different detector design concepts differing in B-field, radius, tracking systems
- Large detector Design
 Concept (LDC)
- High B-field (4T), small radius (6m), TPC

LDC Layout

- Tracking Systems (VTX detector, central tracker, large TPC)
- Calorimeter (ECAL, HCAL, forward cal.)
- Magnet System (large 4T coil)
- Muon System (outside coil)

Goals of the Collaboration

To provide a basis for choosing a **calorimeter technology** for the ILC detectors

To **measure** electromagnetic and hadronic showers with unprecedented granularity

To design, build and test

ILC calorimeter prototypes

Physics prototypes

Various technologies (silicon, scintillator, gas) Large cubes (1 m³ HCALs) Not necessarily optimized for an ILC calorimeter Detailed test program in particle beams

Technical prototypes

 Appropriate shapes (wedges) for ILC detectors

 All bells and whistles (cooling, integrated supplies...)

 Detailed test program in particle beams

To **advance** calorimeter technologies and our **understanding** of calorimetry in general

31. 11. 2007

Mala Skala - Jaroslav Zalesak

PFAs and Calorimetry

Fact

Particle Flow Algorithms improve energy resolution compared to calorimeter measurement alone (see ALEPH, CDF, ZEUS...)

How do they work?

Particles in jets	Fraction of energy	Measured with	Resolution [σ ²]	
Charged	65 %	Tracker	Negligible	
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	≻18%/√
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}	J
Confusion	The real	challenge	≤ 0.04 ² (goal)	

Minimize confusion term Maximize segmentation of the calorimeter readout

High segmentation

 $O(<1 \text{ cm}^2)$ in the ECAL $O(\sim 1 \text{ cm}^2)$ in the HCAL \rightarrow O(10⁷ – 10⁸) channels for

entire ILC calorimter

Can PFAs achieve the ILC goal?

YESII

CALICE Test Beam Activities

1 GEM 10 RPCs+4 GEMs

Mala Skala - Jaroslav Zalesał

Silicon-Tungsten ECAL

 $1 X_0(W) = 3.5 \text{ mm}$

Electronic Readout

Front-end boards located outside of module Digitization with VME – based system (off detector)

Mala Skala - Jaroslav Zalesak

3 structures with different W thicknesses
30 layers; 1 x 1 cm² pads
12 x 18 cm² instrumented in 2006 CERN tests
→ 6480 readout channels

Tests at DESY/CERN in 2006

Electrons 1 – 45 GeV Pions 6 – 120 GeV

Scintillator-Tungsten ECAL

Offers the possibility of hardware compensation

Tested different set-ups

WLSF and groves No WLSF (direct coupling) WLSF in extruded scintillator

ala Skala - Jaros

Physics prototype

26 layers 1 x 4.5 x 0.3 cm³ scintillator strips Read out with Hamamatsu MPPCs + Scintillator-HCAL electronics

Scintillator HCAL

First calorimeter to use SiPMs

Physics prototype

38 steel plates with a thickness of 1 X_0 each Scintillator pads of 3 x 3 \rightarrow 12 x 12 cm² \rightarrow ~8,000 readout channels

Electronic readout

Silicon Photomultipliers (SiPMs) Digitization with VME-based system (off detector)

Tests at DESY/CERN in 2006

23/38 readout planes Electrons 1 - 45 GeV Pions 6 - 50 GeV

Tail Catcher Muon Tracker (TCMT)

тсмт

Steel absorber: layers 1 - 8: t = 2 cm 9 - 16: t = 10 cm Scintillator strips of 5 x 100 x 0.5 cm³ Alternate x, y orientations Complete TMCT in October 2006 CERN run

Electronic readout

SiPMs as for scintillator HCAL Same electronic system as scintillator HCAL

31. 11. 2007

Mala Skala - Jaroslav Zalesak

Digital HCAL

Active elements considered

Resistive Plate Chambers (RPCs): R&D (virtually) complete Gas Electron Multipliers (GEMs): R&D ongoing MicroMegas: R&D initiated

RPCs and GEMs were tested in FNAL test beam

Physics prototype

{16 mm steel plates + 4 mm copper (cooling) } x 38 Re-use stack from scintillator-HCAL

Electronic readout system

1 x 1 cm² pads with digital (single-bit) readout \rightarrow Large number of channels (400,000 for physics prototype) One-bit (digital) resolution with on-detector ASIC Currently preparing Vertical Slice Test \rightarrow if successful initiate construction of physics prototype 31. 11. 2007 Mala Skala - Jaroslav Zalesak

Towards Technical Prototypes

Conclusions

Test beam activities with physics prototypes

	Project	2007b	2008a	2008b	2009a	2009b
ECAL	Si-W	CERN test beam	FNAL test beam			
	MAPS	1 st prototype chip		2 nd prototype chip	DESY test beam	
	Scintillator			FNAL test beam		
HCAL	Scintillator	CERN test beam	FNAL test be	eam FNAL test beam		
	RPC	Vertical slice test in FNAL test beam	Physics prototype construction			
	GEM	Vertical slice test In FNAL test beam	Further R&D on GEMs prototype construction		FNAL test beam	
	MicroMegas		1 plane			
тсмт	Scintllator	CERN test beam	FNAL test be	am		

31. 11. 2007

+ further R&D, technical prototype designs, construction & testing...³⁷

VI. AHCAL

SiPMs for calorimetry

- Multipixel Geiger Mode
 Photodiodes
 - Gain 10⁶, bias ~ 50 V, size 1 mm²
 - Insensitive to magnetic fields

3x3 cm scintillator tile with WLS fibre

1156 pixels with individual quenching resistor on common substrate

31.11.2007

Readout and calibration

- Readout: follow integrated apporach for ECAL and HCAL
 - Synergies in ASIC development
 - Standardized system downstream
- Calibration: use MIP scale
 - inter-calibration and long-term variations
- Monitoring: auto-calibration
 - SiPM gain variations directly observable (~2%/K)
 - Also needed for non-linearity corrections

Single Photon Response

Tile HCAL testbeam prototype

- 1 cubic metre
- 38 layers, 2cm steel plates
- 8000 tiles with SiPMs
- Electronics based on CALICE ECAL design, common back-end and DAQ

Physics Prototype (PPT)

- 1 m³ device consisting of
 38 planes of scintillating
 tiles
- SiPM readout, altogether about 8000 channels
- Each plane equipped with LEDs and appropriate light distribution system

Calibration and monitoring

- SiPM response varies by ~ 5% / K (depending on ΔV)
- The test beam prototype has a highly versatile and redundant LED based monitoring system (electronics: Prague)
 - 1 LED illuminates 18 tiles via fibre bundle
 - PIN-diode controled LED reference signals
 - Low light intensity for gain measurements (single p.e. peaks)
 - Large dynamic range for long-term test of saturation
 - Temperature sensors

CALICE installation at CERN SPS

July - Nov. 2006 CALICE detectors installed in the H6b experimental hall at the CERN SPS

successful commissioning

Hadron (electron) beam 6 - 100 (50) GeV

pion runs

combined system needed to study hadronic showers

data collected at 0° incident angle only 31. 11. 2007 Mala Skala - Jaroslav Zales

from 50 GeV secondary beam:

E	Pion	E	Electr
[GeV]		[GeV]	on
80	~1.2M	45	~600 k
60	~1.2M	40	~600 k
50	~1.2M	30	~600 k
40	~1.2M	20	~600 k
30	~1.2M	10	~600 k

from 10 GeV secondary beam:

E	Pion	E	Electr
[GeV]		[GeV]	on
20	~120k	20	~50k
15	~300k	15	~200k
10	~100k	10	~120k
6	~250k	6	~50 <u>k</u>