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LHC Potential for Discovery
• Standard Model Higgs Boson: 
• MSSM Higgs: discovery perspectives for the 

LHC experiments
• Super Symmetry (SUSY)
• Beyond the Standard Model (non SUSY): 

Large extra dimensions, extended gauge 
symmetries

• CP violation and rare decays
All the results assume full operative detector 

(full detector installed, final performances in 
terms of alignment, calibration, etc.)
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Large Hadron Collider (LHC)
Injection Energy 0.45 TeV

Collision Energy 7 TeV
Dipole field at 7 TeV 8.33 T
Design Luminosity 1034 cm-2 s-1

Luminosity Lifetime 10 h
Protons per bunch 1011

Bunches per beam 2808
Bunch spacing 25 ns
DC Beam Current 0.56 A

Extreme demands on detectors:
• high granularity
• high data-taking rate
• high radiation environment

• ≈ 1 GHz interaction rate
• ≈ 23 minimum bias interactions 
per bunch crossing (pile-up)
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The LHC Machine and ExperimentsThe LHC Machine and Experiments
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The  LHC machine First full LHC cell (~ 120 m long) : 
6 dipoles + 4 quadrupoles; 
successful tests at nominal current (12 kA) 

More than half of the 1232 dipoles are produced

8.4 Tesla
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Lowering of the first dipole
into the tunnel (March 2005)

The magnet production proceeds 
very well and  is on schedule, also 
the quality of the magnets  is very 
good
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LHCb Experimental Area
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ALICEALICEALICE: A Large Ion Collider
Experiment at CERN LHC

Detector
Size: 16 x 26 meters
Weight: 10,000 tons
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The ALICE
Magnet:  

ready for the experiment to move 
in!

• still largest magnet
– magnet volume: 12 m 

long, 12 m high
– 0.5 T solenoidal field
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MUON BARREL

Silicon Microstrips
Pixels

ECAL
Scintillating 

PbWO4 crystals

Cathode Strip Chambers  
Resistive Plate Chambers 

Drift Tube
Chambers

Resistive Plate
Chambers 

SUPERCONDUCTING
COIL

IRON YOKE

TRACKER

MUON
ENDCAPS

Total weight : 12,500 t
Overall diameter : 15 m
Overall length : 21.6 m
Magnetic field : 4 Tesla

HCAL
Plastic scintillator/brass
sandwich

CALORIMETERS

CMS: Compact Muon Solenoid



CMS Endcap Muon Spectrometer

All 400 chambers produced ! CSC installation

60% CSCs installed, 50% commissioned with cosmic rays 12
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The ATLAS Detector
Muon Detectors |η|< 2.7

Fast response for trigger
Good p resolution (e.g., A/H → µµ)

Electromagnetic Calorimeters
excellent electron/photon identification
Good E resolution (e.g., H→γγ) |η|< 3.2

Magnet System
Central Solenoid (2T)
Air core Toroids (4T)

Hadron Calorimeters
Good jet and ET miss performance

(e.g., H →ττ) |η|<4.9

Length: ~40m
Radius: ~10m
Weight: ~ 7000 t
El. Channels: ~108

Cables: ~3000 km 

Inner Detector
High efficiency tracking

Good impact parameter res.
(e.g., H → bb) |η|< 2.5

ATLAS = A Toroidal LHC ApparatuS
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ATLAS Pit  28 Jul 2005  15:00



15

SM Higgs Boson
• The Higgs boson mass is 

not theoretically 
predicted. Both 
theoretical and 
experimental limits exist

From direct LEP search:

MH > 114.4 GeV

From the Electroweak fit of the 
standard model

MH < 260 GeV

MH > 1 TeV is theoretically forbidden

The LHC experiments will cover the 
range from the LEP limit up to the 

TeV scale
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SM Higgs Production @ LHC
Gluon Fusion
- dominant process

Vector Boson Fusion
- 20% of gg @ 120GeV

Associated Production
- W or Z (1-10% of gg) 

Associated Production
- tt or bb (1-5% of gg)- -

4 production mechanism     key to measure H-boson parameters
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Main Discovery Channels

_

m(H) > 2 mZ :
H → ZZ → 4λ
qqH → ZZ → λλ νν * 
qqH → ZZ → λλ jj *
qqH → WW→ λνjj
* * for mH > 
300 GeV forward 
jet tag

Low mass region: m(H) < 2 mZ :
H → γγ : small BR, but best resolution
H → bb : good BR, poor resolution ttH, WH
H → ττ : via VBF
H → ZZ* → 4λ
H → WW* → λνλν or λνjj : via VBF

Dominant BR for mH<2mZ:
σ (H → bb) ≈ 20 pb; 
σ (bb)      ≈ 500 µb 

for m(H) = 120 GeV
→ no hope to trigger

or extract fully
had. final states

→ look for final
states with λ, γ
(λ = e,µ ) 

-

-

-

-
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Higgs Decay into γγ

%47.0
)(

%2.9
⊕=

GeVEE
σ

100 fb-1

MH=130GeV

K=1.6

S/BG ~ 1/20

σM: ~1GeV

The Higgs decay into γγ is a challenge for the EM calorimeters.

Key points: calorimeter resolution (and linearity), id of photons vs
rejection against π0

CMS(barrel, measured 
with 5x5 crystal array)

ATLAS (barrel, module 0 
at TestBeam, η = 0)

Dedicated algorithm for the recovery of 
photon conversion (~1/3) in the material in 

front of the EM calorimeter

Calorimeter segmentation is critical to reject 
jets. For ~80% efficiency, the jet rejection 
factor is 1000 to 4000, depending on the ET

%55.0
)(

155.0
)(

%7.2
⊕⊕=

GeVEGeVEE
σ

Main backgrounds: irreducible γγ dominant. γj and jj together are half the 
irreducible background
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Higgs Decay into ZZ
Final states investigated: 2e2µ, 4µ, 4e

Irreducible background from direct ZZ production

Reducible background coming mainly from tt,Zbb
The reducible background are strongly 

reduced by isolation criteria on the 
leptons and by b-veto

The channel is useful for the Higgs 
discovery in the ranges 

130 GeV < MH < 150 GeV

and

180 GeV < MH < 600 GeV

(H WW is opened at ~160 GeV)
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Overall Higgs Significance for L = 100 fb–1

VBF channels improve 
the low mass region!

VBF channels improve 
the low mass region!

LEP2 Limit

114 GeV < mH < 190 GeV:
several complementary 
channels

114 GeV < mH < 190 GeV:
several complementary 
channels

190 GeV < mH < 700 GeV:
easy with H → ZZ → 4λ

190 GeV < mH < 700 GeV:
easy with H → ZZ → 4λ

700 GeV < mH < 1 TeV:
need H → ZZ → λλνν, λλjj

H → WW → λνjj

700 GeV < mH < 1 TeV:
need H → ZZ → λλνν, λλjj

H → WW → λνjj

5σ

∫ L dt = 
100 fb-1
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Prospects for Extended Higgs Sector

No VBF

with VBF

300 fb-1

10 fb-1

10 fb-1

Still in a region we can 
disentangle looking at 
the ratio between the 
BR into ττ and WW. 
Anyway, it is 
difficult….
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Super Symmetry - mSUGRA Reach

~ “1 day” : 
up to 1.5 TeV

~ “10 days” : 
up to 2 TeV

~ 100 days : 
up to 2.3 TeV

But : it will take a lot time to understand  the
detectors and the backgrounds …

band indicates factor ± 2 variation in  
in background estimate

.

5 σ contours

Can be discovered up
to m ~ 2.5-3.0 TeV
σ(qq, gg, qg) ~ pb

(m    ~ 1 TeV)
~~   ~~  ~~

signature: cascade with 
many jets, leptons, W, Z, b, 
top in the final state   

… can ATLAS/CMS perform 
precise  measurements
(masses, couplings etc.)?

~~
gq

~~
gq
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SUSY Mass Scale
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For ’Jets + E Tmiss + 0 leptons’ events, 
define:

M mass u mass gSUSY = min{ (~), (~)}

Peak 
position is 
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the SUSY 
mass scale 



24

Dilepton Edge
Leptonic decays for χ0

2 in large 
part of parameter space:~

0
1

~
0
2

~~ χχ −+→→ llll R

0
1

0
2

~~ χχ −+→ ll

0
1

0
2

~~ χχ Z→

Decay to l l χ0
1 

and Z χ0
1 

The shape of mll distribution shows whether 2 or 3 body decays

Decay to l  and 
slepton
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Dilepton Edge Example
m0 = 100 GeV, m1/2 = 300 GeV 

Expected edge position for signal:

SM background is primarily  
tt      jjllνν. 
Signal is SF only, 
OF subtraction removes SM 
background.

Edge position fitted to 
give mass relations at % 
level with 100 fb-1

Flavour subtraction

--

Signal after cuts
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Mass Measurements
Edges give handle on sparticle masses:

ℓq low

χ0
2

χ0
1 ℓR

qL

ℓ+ℓ-

~

~ ~

~

ℓ ℓ q  edge

ℓq high

hq
ℓ ℓ q 
thr.

Masses can be measured to ~  3 - 12 %



BSM: Selected of BSM: Selected of topicstopics
• Extended gauge symmetries:

Heavy Gauge bosons: Z’,W’
Little Higgs
LRSM:  H++, Z’, W’, Majorana N…
Heavy fermions
Isosinglet quarks (E6 down, Top)

Flavour Changing Neutral Current
Compositeness:

Excited fermions (electrons, quarks)
Leptoquarks

• Extra dimensions
Large extra dimensions:

direct Graviton production
Virtual exchange of gravitons
Black Holes

Small extra dimensions:
KK excitations of gauge bosons: W, Z and g
Universal extra dimensions
Coupling unification

Warped extra dimensions:
RS radion
Narrow Graviton resonance 27
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Little Higgs Model (2001)

• Heavy quark top

Supersymmetry

bosons
fermions new bosons

new fermions
cancellations

• Quadratic divergences 

pseudo-Goldstone
bosons

"light" mass

Goldstone
bosons
massless

• Symmetries and pseudo-Goldstone
bosons 

new quark t
new bosonsbosons

quark t cancellations

Little Higgs

NB : SM Higgs remains
with the same
properties (BR …)

φ0    φ+    φ++
• Heavy Higgses

T

• Heavy gauge bosons
ZH WH AH

symmetry
breakingglobal symmetry

SU(2)L×U(1)Ylocal  symmetry

SU(5)

big
scale

electroweak
symmetry
breaking

SO(5)

electroweak
scale

New particules

28

• To note
effective model up to Λ=10 TeV,   

compatible with
experimental constraints

(see hep-ph/0301040)
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M(H)=200 GeV (1)

29

Signal 1
Backgrounds

M(ZH) σ.BR (fb)
1000 3.06
1500 0.65
2000 0.15

mixing of
leptons   
and jets

l = e or µ

1 TeV
εS = 30%

S = 181
B = 21
Sign.= 23

εB < 1%

Most efficient cuts
- on reconstructed masses of H and ZH/WH

- on transverse impulsion of the Higgs and
the W going in quarks

1 or 2 
jetsZZHH

ZZ

WW

νν

HH

ll

ll

qq

qq

ll

WW

σ.BR (fb)
tt (3l) 3376
WZ(3l) 388

H(4l) 47
ZZ(4l) 71

others <13

-

missing
energy

(cotθ=0.5)

(cotθ=0.5)

M(ZH) (GeV)
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Heavy Ion: Jet quenching
Energy loss of fast partons by excitation and gluon radiation

larger in QGP

Suppression of high-z hadrons and increase of soft hadrons in jets.

Induced gluon radiation results in the modification of jet properties like
a broader angular distribution.

Could manifest itself as an increase in the jet cone size or an effective 
suppression of the jet cross section within a fixed cone size.

Measuring jet profile is the most direct way to observe any change.
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Heavy Ion: Jet Studies
Pb-Pb collisions (b= 0 –1 fm)

Efficiency

Fake rate

Energy resolutionPb-Pb

p-p

PYTHIA jets embedded with 
central Pb-Pb HIJING events

• For ET > 75GeV: efficiency > 95%, fake < 5%
• Good energy resolution 

First attempt of reconstruction:
sliding window algorithm ∆Φx∆η
=0.4x0.4 with splitting/merging
after background energy subtraction

(average and local)

At LHC, we have a chance to fully reconstruct the jets  and to measure a 
jet inclusive cross section
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Conclusions
LHC Experiments can discover the Higgs in range from 
LEP2 limit 114 GeV to 1 TeV
SM Higgs observed with 10 fb-1:
– Vector Boson Fusion significantly enhances sensitivity for low and 

medium mH:
– Known channels (H →bb, γγ, 4λ…) well assessed
Most of MSSM plane explored with 10 fb-1

LHC Experiments will find TeV scale SUSY if it is there. 
The first 10 fb-1 will reach up to ~ 2 TeV
Evidence for extended gauge symmetries, extra 
dimensions, flavor violation, etc are expected to turn up at 
the LHC
Heavy Ion program, evidence of quark-gluon plasma
CP violation studies and search for rare decays
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Back – up Slides
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Light Higgs Search: VBF
Motivation

Strong discovery potential for mH < 190 
GeV
Determine Higgs parameters
Also good for Invisible Higgs

Production
σ = 4 pb = 20% of total σ (mH = 120 GeV)

Decays
H → WW* → λνλν, λνqq’
H → ττ → λννλνν, λννj

Distinct Final States
Fragmentation of q which emitted W,Z

Two high pT jets with large ∆η
(opposite hemispheres)

Lack of colour exchange in initial state
Little jet activity in central region       
central jet veto

η distribution of tag jets
VBF signal: mH = 160 GeV

Tag jets = highest pT jet 
in each η-hemisphere
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VBF H WW

MH=160 GeV
WW eµ

ATLAS

10 fb-1

• Two isolated leptons:
– pT> (20 GeV, 15 GeV)

• Two forward tag jets:
– pT > (40 GeV, 20 GeV); ∆η>3.8
– (e ≈ 50% with fake ≈ 1% @ 1034)

• Central jet veto: pT<20 GeV
• lepton angular correlations (anti-

correlation of W spins from H 
decay)
– δφλλ , cosθλλ , mλλ

The normalization of the 
background can be 

estimated at 10% level 
from data. Background 
shape taken from MC CMS

60 fb-1

The channel is one of the 
most promising for

135 GeV < MH <190 GeV
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Determination of Higgs Parameters

Mass Determination Width Measurement

Ratios of CouplingsRatios of Partial Widths 
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MSSM
Minimal Supersymmetric extension: two 

Higgs doublets ⇒ 8 degrees of freedom (5 
particles):

CP-even : h,H    CP-odd: A   Charged: 
H+,H-

At high MA the heavy 
bosons degenerate in 

mass while the h saturate 
at a limit value (around 

130 GeV)
Couplings to SM particles modified 

w.r.t. SM. Decay into third generation 
fermions enhanced at high tgβ

gu gd gV

h cosα/sinβ -sinα/cosβ sin(β-α)

H sinα/sinβ cosα/cosβ cos(β-α)

A 1/tgβ tgβ 0
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Super Symmetry (SUSY)
The ability of the LHC to search for SUSY has been 
investigated in the self-consistent Frameworks of:

• Super Gravity: SUGRA
– SUSY is broken in a hidden sector: Gravity is the sole messenger
– The Lightest Super Symmetric Particle (LSP) is χ0 : stable, neutral, weakly 

interacting ⇒ transverse missing energy
• Gauge Mediated Super Symmetry Breaking: GMSB

– SUSY is broken in a hidden sector: particles get mass through 
SU(3)xSU(2)xU(1) gauge interactions

– Grivitino is the LSP. NLSP = neutralino or stau, short or long-lived
• R-parity Violation

– In SUSY possible to violate both L and B-number ⇒ rapid proton decay : R-
parity eliminates the “offending” terms. No reason why R should be a 
symmetry of the Langrangian

– For the proton to remain stable, either L or B violating terms should be absent
– The LSP no longer stable

• …

1
~
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LeptoQuarksLeptoQuarks

•• CouplesCouples to to λλ±±qq and/orand/or ννqq
•• ProductionProduction
•• Decays:Decays:

–– LQsLQs decay to decay to λλ±±qq and/orand/or ννqq with with 
branching ratios branching ratios ββℓℓ, , ββνν = 0, 0.5, 1= 0, 0.5, 1
(depending on the quantum (depending on the quantum 
numbers)numbers)

ββ ≡λ

β1β −=ν

qqqq→→LQLQ LQ  and LQ  and gggg→→LQLQ LQLQ

•• PredictedPredicted by a lot of by a lot of modelsmodels::
HigherHigher Gauge Gauge symmetriessymmetries, , CompositenessCompositeness, , TechnicolorTechnicolor……

•• TwoTwo Types: Types: scalarsscalars and and vectorsvectors
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SensitivitySensitivity to to LeptoQuarksLeptoQuarks II

mLQ=1 TeV

mLQ=1.3 TeV

•• Fast simulation: Scalar LQFast simulation: Scalar LQ
–– LQ LQ LQ LQ →→ ℓℓ++qqℓℓ--q and q and ννqqννqq
–– 2 jets+2 leptons:2 jets+2 leptons: 11stst and 2and 2nd nd generationgeneration

•• HighHigh Pt Pt isolationisolation + + HighHigh mmljlj cutcut
sensitivitysensitivity: m: mLQLQ=1.0 =1.0 TeVTeV

– 2 leptons + Et: 3rd generation

• b-jets+non isolated leptons+topo
upup to mto mLQLQ~1.3 ~1.3 TeVTeV

•• Full Full simulationsimulation:: under progressunder progress

2 jets + 2 leptons

ATL-COM-PHYS-1004-071

(30 fb-1)
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Atlfast

Full

Kt
Cone7
Cone4

Z+jet + TTbar

Good S/B

•• Fast SimulationFast Simulation: Vector + Scalar LQ: Vector + Scalar LQ
–– Single+doubleSingle+double productionproduction ((CompHepCompHep))

sensitivitysensitivity: m: mLQLQ=1.3 =1.3 TeVTeV

•• Full Full SimulationSimulation: : VectorVector LQ M=0.5, 1 LQ M=0.5, 1 TeVTeV
•• Geant4(9.0.4) + AOD (10.0.1).Geant4(9.0.4) + AOD (10.0.1).

–– 2 electrons with Pt > 2 electrons with Pt > 9090 ((100100) ) GeV/cGeV/c, |, |ηη|<2.5|<2.5
–– At least 1 jet  with Pt > At least 1 jet  with Pt > 7070 ((100100) ) GeV/cGeV/c, |, |ηη|<2.5|<2.5
–– ElecElec selsel.: Likelihood ( > 0.6 ) or .: Likelihood ( > 0.6 ) or isEMisEM cuts ,cuts ,
–– ∆∆R > 0.1, opposite signR > 0.1, opposite sign
–– Jets selection: Jets selection: ∆∆R separation > 0.1 , R separation > 0.1 , 
–– EMfrac/PtjetEMfrac/Ptjet cut, Ht sum>cut, Ht sum>800800 ((15001500) ) GeVGeV, , 

–– Cut on Cut on eeee mass (mass (ZmassZmass veto).veto).

• Low Reco efficiency ~ 50% of Atlfast !
• Need to improve selection criteria.
• Need more B/G (esp.Z+jet) high-Pt events for S/B est.

SensitivitySensitivity to to LeptoQuarksLeptoQuarks IIII



Excited Excited fermionfermion production: excited quarksproduction: excited quarks

•• Full SimulationFull Simulation StudyStudy:: m=1000 m=1000 GeVGeV
Cuts:    Cuts:    Pt > 300 Pt > 300 GeVGeV

||ηη| < 2.5| < 2.5
∆∆RRγγj > 0.1j > 0.1

q q

g q*
γ

* ' . .'1
2 2 2

a
R s Ls

YL q g G g W g B cf qf f hµν
µν µν µν

τσ ⎛ ⎞= + + +⎜ ⎟
⎝ ⎠Λ

, ' 1sf f f= = =

• PredictedPredicted by by compositenesscompositeness::
•• TransitionsTransitions betweenbetween ordinaryordinary and and excitedexcited fermions:fermions:

C4: 980 GeV
C7: 999 GeV
Kt: 1014 GeV

Fit:

Area to
investigate

Atlfast

Pt of γ

Comparison with Atlfast

44
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pp     pp     eeee** eeeeγγ
Excited electron production:

Mass of 1000 GeV,
Generated by Pythia
xSec=133 pb
Cuts: 2 electrons and
1 photon with Pt>300 GeV
and |η|<2.5
Elec selection: Lk(>0.6) 

Single production

Sel. γ

Atlfast

Pt resolution:

or isEM

[Pt-PtMC]/Pt

γ
e

Sel. elec
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Pt: electrons              
photons

η: electrons 
photons

Comparison

with Atlfast

Clean narrow signal is expected

M=1000 GeV
σ=20 GeV

Fit:Eff ~ 82%
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Heavy gauge Bosons

47

…

Decays (ZH)Production (ZH)

)W(M)Z(M HH ≈

2

2
2

HH c/GeV200
)H(Mc/TeV6)W/Z(M ⎟

⎠
⎞

⎜
⎝
⎛<

Masses cotθ is a parameter of the Model   
(analog to θWeinberg)degenerate

σ(WH) = 2 σ(ZH)
BR(WH→WH)             
= BR(ZH→ZH)

Characteristic
decays

ZH  → Z H

WH  → W H
if a Z' and W' are 
discovered via a leptonic
decay, these modes allow
to say if they come from
the Little Higgs model or 
not (thanks to cotθ )

cot θ

σ
(f

b)

BR

M(ZH) (TeV)

cross-sections and BR 
are determined by cotθ
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