LHC Discovery Potential

Kétévi A. Assamagan Brookhaven National Laboratory Upton, New York, USA

LHC Potential for Discovery

- Standard Model Higgs Boson:
- MSSM Higgs: discovery perspectives for the LHC experiments
- Super Symmetry (SUSY)
- Beyond the Standard Model (non SUSY): Large extra dimensions, extended gauge symmetries
- CP violation and rare decays

All the results assume full operative detector (full detector installed, final performances in terms of alignment, calibration, etc.)

Large Hadron Collider (LHC)

Injection Energy	0.45 TeV
Collision Energy	7 TeV
Dipole field at 7 TeV	8.33 T
Design Luminosity	10 ³⁴ cm ⁻² s ⁻¹
Luminosity Lifetime	10 h
Protons per bunch	10 ¹¹
Bunches per beam	2808
Bunch spacing	25 ns
DC Beam Current	0.56 A

- $\approx 1 \text{ GHz}$ interaction rate
- $\bullet\approx$ 23 minimum bias interactions per bunch crossing (pile-up)

Extreme demands on detectors:

- high granularity
- high data-taking rate
- high radiation environment

The LHC Machine and Experiments

The LHC machine

More than half of the 1232 dipoles are produced

First full LHC cell (~ 120 m long) : 6 dipoles + 4 quadrupoles; successful tests at nominal current (12 kA)

Lowering of the first dipole into the tunnel (March 2005)

The magnet production proceeds very well and is on schedule, also the quality of the magnets is very good

LHCb Experimental Area

RICH1 shielding-box in front of magnet

Detector ALICE: A Large Ion Collider TOF Size: 16 x 26 meters TRD Weight: 10,000 tons TPC P 6 8 ITS LIII (9) **Muon** Arm PHOS

still largest magnet - magnet volume: 12 m long, 12 m high - 0.5 T solehoidal field

The ALICE Magnet:

ready for the experiment to move

CMS: Compact Muon Solenoid

CMS Endcap Muon Spectrometer

All 400 chambers produced !

CSC installation

60% CSCs installed, 50% commissioned with cosmic rays

The ATLAS Detector

Muon Detectors $|\eta| < 2.7$ ATLAS = A Toroidal LHC ApparatuS Fast response for trigger Good *p* resolution (e.g., $A/H \rightarrow \mu\mu$) Length: ~40m Muon Detectors **Electromagnetic Calorimeters** Radius: ~10m Forward Calorimeters Weight: ~ 7000 t End Cap Toroid El. Channels: ~108 Cables: ~3000 km Magnet System Central Solenoid (2T) Air core Toroids (4T) **Inner Detector** High efficiency tracking Good impact parameter res. Inner Detec **Barrel** Toroid Shielding Hadronic Calorimeters (e.g., $H \rightarrow bb$) $|\eta| < 2.5$ **Electromagnetic Calorimeters** Hadron Calorimeters excellent electron/photon identification Good jet and E_T miss performance Good *E* resolution (e.g., $H \rightarrow \gamma \gamma$) $|\eta| < 3.2$ (e.g., $H \rightarrow \tau \tau$) $|\eta| < 4.9$

SM Higgs Boson

 The Higgs boson mass is not theoretically predicted. Both theoretical and experimental limits exist

From direct LEP search:

M_H > 114.4 GeV

From the Electroweak fit of the standard model

M_H < 260 GeV

 $M_H > 1$ TeV is theoretically forbidden

The LHC experiments will cover the range from the LEP limit up to the TeV scale

SM Higgs Production @ LHC

4 production mechanism \rightarrow key to measure H-boson parameters

Main Discovery Channels

Higgs Decay into $\gamma\gamma$

The Higgs decay into $\gamma\gamma$ is a challenge for the EM calorimeters.

Key points: calorimeter resolution (and linearity), id of photons vs

rejection against π_0

CMS(barrel, measured with 5x5 crystal array)

 $\frac{\sigma}{E} = \frac{2.7\%}{\sqrt{E(GeV)}} \oplus \frac{0.155}{E(GeV)} \oplus 0.55\% \qquad \qquad \frac{\sigma}{E} = \frac{9.2\%}{\sqrt{E(GeV)}} \oplus 0.47\%$

ATLAS (barrel, module 0 at TestBeam, $\eta = 0$)

Calorimeter segmentation is critical to reject jets. For ~80% efficiency, the jet rejection factor is 1000 to 4000, depending on the E_{T}

Dedicated algorithm for the recovery of photon conversion $(\sim 1/3)$ in the material in front of the EM calorimeter

Main backgrounds: irreducible $\gamma\gamma$ dominant. γ j and jj together are half the irreducible background

Higgs Decay into ZZ

Final states investigated: 2e2µ, 4µ, 4e Irreducible background from direct ZZ production

Reducible background coming mainly from tt,Zbb

The reducible background are strongly reduced by isolation criteria on the leptons and by b-veto

The channel is useful for the Higgs discovery in the ranges 130 GeV < M_H < 150 GeV and

180 GeV < M_H < 600 GeV

Overall Higgs Significance for $\mathcal{L} = 100 \text{ fb}^{-1}$

Prospects for Extended Higgs Sector

Super Symmetry - mSUGRA Reach

SUSY Mass Scale

Leptonic decays for χ^0_2 in large part of parameter space:

$$\begin{aligned} \widetilde{\chi}_{2}^{0} \rightarrow l^{+}l^{-}\widetilde{\chi}_{1}^{0} \\ \widetilde{\chi}_{2}^{0} \rightarrow \widetilde{l}_{R} \ l \rightarrow l^{+}l^{-}\widetilde{\chi}_{1}^{0} \\ \widetilde{\chi}_{2}^{0} \rightarrow Z\widetilde{\chi}_{1}^{0} \end{aligned}$$

The shape of m_{μ} distribution shows whether 2 or 3 body decays

Dilepton Edge Example

 $m_0 = 100 \text{ GeV}, m_{1/2} = 300 \text{ GeV}$

Expected edge position for signal:

$$M_{ll}^{\max} = M(\tilde{\chi}_2^0) \sqrt{1 - \frac{M^2(\tilde{l}_R)}{M^2(\tilde{\chi}_2^0)}} \sqrt{1 - \frac{M^2(\tilde{\chi}_1^0)}{M^2(\tilde{l}_R)}} = 108.93 \text{ GeV}$$

2204 105.7

1,211

150

SM background is primarily tt → jjllvv. Signal is SF only, OF subtraction removes SM background.

Edge position fitted to give mass relations at % level with 100 fb⁻¹

Signal after cuts

Edges give handle on sparticle masses:

Masses can be measured to \sim 3 - 12 %

 $l_{\rm near}^{\pm}$

q

BSM: Selected of topics

• Extended gauge symmetries:

Heavy Gauge bosons: Z',W' Little Higgs LRSM: H++, Z', W', Majorana N... Heavy fermions Isosinglet quarks (E6 down, Top) Flavour Changing Neutral Current Compositeness:

Excited fermions (electrons, quarks)

Leptoquarks

• Extra dimensions

Large extra dimensions: direct Graviton production Virtual exchange of gravitons Black Holes Small extra dimensions: KK excitations of gauge bosons: W, Z and g Universal extra dimensions Coupling unification Warped extra dimensions: RS radion Narrow Graviton resonance

Most efficient cuts

- on reconstructed masses of H and $Z_{\rm H}/W_{\rm H}$

- on transverse impulsion of the Higgs and 29 the W going in guarks

 $M(Z_{\mu})$ (GeV)

1200

900

1000

1100

Sign.= 23

1300 1400

1500

Heavy Ion: Jet quenching

Energy loss of fast partons by excitation and gluon radiation

Suppression of high-z hadrons and increase of soft hadrons in jets.

 Induced gluon radiation results in the modification of jet properties like a broader angular distribution.

Could manifest itself as an increase in the jet cone size or an effective suppression of the jet cross section within a fixed cone size.

•Measuring jet profile is the most direct way to observe any change.

Heavy Ion: Jet Studies

PYTHIA jets embedded with central Pb-Pb HIJING events

First attempt of reconstruction: sliding window algorithm ΔΦxΔη =0.4x0.4 with splitting/merging after background energy subtraction (average and local)

raction(**گ**) 08 001 Efficiency 60 F Fake rate 40 20 0 50 100 150 200 250 300 350 25 ₅√E (ス) 20 Energy resolution 15 10 5 50 250 100 150 200 300 350

E₁ (GeV)

Pb-Pb collisions (b= 0 - 1 fm)

- For E_T > 75GeV: efficiency > 95%, fake < 5%
- Good energy resolution

At LHC, we have a chance to fully reconstruct the jets and to measure an jet inclusive cross section

Conclusions

- LHC Experiments can discover the Higgs in range from LEP2 limit 114 GeV to 1 TeV
- SM Higgs observed with 10 fb⁻¹:
 - Vector Boson Fusion significantly enhances sensitivity for low and medium $m_{\rm H}$:
 - Known channels (H \rightarrow bb, $\gamma\gamma$, 4 λ ...) well assessed
- Most of MSSM plane explored with 10 fb⁻¹
- LHC Experiments will find TeV scale SUSY if it is there. The first 10 fb⁻¹ will reach up to ~ 2 TeV
- Evidence for extended gauge symmetries, extra dimensions, flavor violation, etc are expected to turn up at the LHC
- Heavy Ion program, evidence of quark-gluon plasma
- CP violation studies and search for rare decays

Back – up Slides

Light Higgs Search: VBF

Motivation

- Strong discovery potential for m_H < 190 GeV
- Determine Higgs parameters
- Also good for Invisible Higgs
- Production
- $\Rightarrow \sigma$ = 4 pb = 20% of total σ (m_H = 120 GeV)
- Decays
- $\label{eq:Hamiltonian} H \to \tau\tau \to \lambda\nu\nu\lambda\nu\nu,\,\lambda\nu\nu j$
- **Distinct Final States**
- Fragmentation of q which emitted W,Z
 → Two high p_T jets with large Δη
 (opposite hemispheres)
- Lack of colour exchange in initial state
 Little jet activity in central region
 central jet veto

VBF H→WW

Two isolated leptons: dơ/dM_{TG}(fb/10 GeV/c²) Higgs signal m_H=160 GeV/c² EE 8 8 9 $\tau \tau$ background - pT> (20 GeV, 15 GeV) tt + Wt background 10 fb⁻¹ WW backaround Two forward tag jets: WW**→**eµ pT > (40 GeV, 20 GeV); Δη>3.8 M_{μ} =160 GeV (e \approx 50% with fake \approx 1% @ 10^{34}) 0.5 ATLAS Central jet veto: pT<20 GeV lepton angular correlations (anti-correlation of W spins from H 0.25 decay) σ - $\delta\phi\lambda\lambda$, $\cos\theta\lambda\lambda$, $m\lambda\lambda$ 100 150 200 n 50 250 M_T (GeV/c²) The normalization of the 60 fb⁻¹ Se 250 background can be aa → aaH ഹ $H \rightarrow WW' \rightarrow two \, leptons + \mu$ estimated at 10% level 200 Events for 60 fb⁻¹ $m_{\rm H} = 160 \text{ GeV}$ from data. Background 150 shape taken from MC CMS 100 The channel is one of the 50 most promising for 0 135 GeV $< M_{H} < 190$ GeV

20

0

40

60 80 100 120 140 160 180

m_t(lepton pair,E_t^{miss}) (GeV)

Determination of Higgs Parameters

Determination of Coupling Parameters

Overview of signal channels

Produc	tion	Decay	mass range
g seeen to u	Gluon-Fusion	$H \rightarrow ZZ \rightarrow 4l$	110 GeV - 200 GeV
	$(gg \rightarrow H)$	$H \to WW \to l \nu l \nu$	110 GeV - 200 GeV
		$H ightarrow \gamma \gamma$	110 GeV - 150 GeV
9'	WBF	$H \rightarrow ZZ \rightarrow 4l$	110 GeV - 200 GeV
W, Z _ <u>H</u> _	(qq H)	$H \to WW \to l \nu l \nu$	110 GeV - 190 GeV
W, Z		$H \to \tau \tau \to l \nu \nu l \nu \nu$	110 GeV - 150 GeV
g ·		$H \to \tau \tau \to l \nu \nu {\rm had} \nu$	110 GeV - 150 GeV
		$H \rightarrow \gamma \gamma$	110 GeV - 150 GeV
leeee E	$t\bar{t}H$	$H \to WW \to l \nu l \nu (l \nu)$	120 GeV - 200 GeV
^t - <u>H</u> -		$H \rightarrow b \overline{b}$	110 GeV - 140 GeV
000000000000000000000000000000000000000		$H ightarrow \gamma \gamma$	110 GeV - 120 GeV
W.Z.	WH	$H \to WW \to l \nu l \nu (l \nu)$	150 GeV - 190 GeV
q'		$H \rightarrow \gamma \gamma$	110 GeV - 120 GeV
	ZH	$H \rightarrow \gamma \gamma$	110 GeV - 120 GeV

Determination of Coupling Parameters Extracting Higgs Boson couplings information

Problem : GF and H $\rightarrow \gamma \gamma$ are loop-induced. What is the coupling ? Assumption : Only SM particles couple to Higgs boson

 \rightarrow Express all Higgs Boson production and decay modes by couplings

Higgs Boson production	Higgs Boson decay	Gluon-
$\sigma_{ggH} = \alpha_{\rm GF} \cdot g_t^2$ (no b-loop)	$BR(H \to WW) = \beta_W \cdot \frac{g_W^2}{\Gamma_H}$	Fusion
$\sigma_{WBF} = \alpha_{\rm WF} \cdot g_W^2 + \alpha_{\rm ZF} \cdot g_Z^2$	$BR(H \to ZZ) = \beta_Z \cdot \frac{g_Z^2}{\Gamma_H}$	t H -
$\sigma_{t\bar{t}H} = \alpha_{t\bar{t}H} \cdot g_t^2$	$BR(H \to \tau \tau) = \beta_{\tau} \cdot \frac{g_{\tau}^2}{\Gamma_H}$	$H \rightarrow \gamma \gamma$
$\sigma_{WH} = \alpha_{WH} \cdot g_W^2$	$BR(H \rightarrow b\bar{b}) = \beta_b \cdot \frac{g_b^2}{\Gamma_H}$	$W^-, \varepsilon \sim \gamma$ H
$\sigma_{ZH} = \alpha_{ZH} \cdot g_Z^2$	$BR(H \rightarrow \gamma \gamma) = \frac{(a g_W - b g_t)^2}{\Gamma_H}$	w+, * ~~ ~
Γ_H not known $ ightarrow$ Measurement o	of $rac{g_Z^2}{g_W^2}$, $rac{g_\tau^2}{g_W^2}$, $rac{g_b^2}{g_W^2}$, $rac{g_b^2}{g_W^2}$, $rac{g_t^2}{g_W^2}$ and	$\frac{g_W^2}{\sqrt{\Gamma_H}}$

MSSM

Minimal Supersymmetric extension: two Higgs doublets \Rightarrow 8 degrees of freedom (5 particles):

CP-even : h,H CP-odd: A Charged: H^+,H^-

Couplings to SM particles modified w.r.t. SM. Decay into third generation fermions enhanced at high tgβ

	g u	g d	$\mathbf{g}_{\mathbf{V}}$
h	cosα/sinβ	-sinα/cosβ	$\sin(\beta-\alpha)$
Η	sinα/sinβ	cosα/cosβ	cos(β-α)
A	1/tgβ	tgβ	0

At high M_A the heavy bosons degenerate in mass while the h saturate at a limit value (around 130 GeV)

Super Symmetry (SUSY)

The ability of the LHC to search for SUSY has been investigated in the self-consistent Frameworks of:

• Super Gravity: SUGRA

- SUSY is broken in a hidden sector: Gravity is the sole messenger
- The Lightest Super Symmetric Particle (LSP) is χ^0 : stable, neutral, weakly interacting \Rightarrow transverse missing energy
- Gauge Mediated Super Symmetry Breaking: GMSB
 - SUSY is broken in a hidden sector: particles get mass through SU(3)xSU(2)xU(1) gauge interactions
 - Grivitino is the LSP. NLSP = neutralino or stau, short or long-lived
- R-parity Violation
 - In SUSY possible to violate both L and B-number ⇒ rapid proton decay : Rparity eliminates the "offending" terms. No reason why R should be a symmetry of the Langrangian
 - For the proton to remain stable, either L or B violating terms should be absent
 - The LSP no longer stable

• Predicted by a lot of models:

Higher Gauge symmetries, Compositeness, Technicolor...

- Two Types: scalars and vectors
- Couples to $\lambda^{\pm}q$ and/or νq
- **Production** $qq \rightarrow LQ LQ$ and $gg \rightarrow LQ LQ$

Decays:

LQs decay to λ[±]q and/or vq with branching ratios β_ℓ, β_v = 0, 0.5, 1 (depending on the quantum numbers)

Sensitivity to LeptoQuarks I

- Fast simulation: Scalar LQ
 LQ LQ → ℓ⁺qℓ⁻q and vqvq
 - 2 jets+2 leptons: 1st and 2nd generation
 - High Pt isolation + High m_{lj} cut
 - → sensitivity: m_{LQ}=1.0 TeV
 - 2 leptons + Et: 3rd generation
 - *b*-jets+non isolated leptons+topo
 →up to m_{LQ}~1.3 TeV
 ATL-COM-PHYS-1004-071
- Full simulation: under progress

Sensitivity to LeptoQuarks II

- Fast Simulation: Vector + Scalar LQ^{^{*}}
 - Single+double production (CompHep)
 →sensitivity: m_{LQ}=1.3 TeV
- Full Simulation: Vector LQ M=0.5, 1 TeV⁶
 - Geant4(9.0.4) + AOD (10.0.1).
 - 2 electrons with Pt > 90 (100) GeV/c, $|\eta|$ <2.5
 - At least 1 jet with Pt > 70 (100) GeV/c, $|\eta|$ <2.5
 - Elec sel.: Likelihood (> 0.6) or isEM cuts ,
 - ΔR > 0.1, opposite sign
 - Jets selection: ∆R separation > 0.1 ,
 - EMfrac/Ptjet cut, Ht sum>800 (1500) GeV,
 - Cut on ee mass (Zmass veto).
 - Low Reco efficiency ~ 50% of Atlfast !
 - Need to improve selection criteria.
 - Need more B/G (esp.Z+jet) high-Pt events for S/B est.

Excited fermion production: excited quarks

- Predicted by compositeness:
- Transitions between ordinary and excited fermions:

Excited electron production:

ATLAS Barrel Detector

nt 3470

Heavy gauge Bosons

