CREAM Pushing the High Energy Frontier of Directly Measured Cosmic Rays

The CREAM Collaboration

Principal Investigator - E.S. Seo

University of Maryland H.S. Ahn, O. Ganel, K.C. Kim, M.H. Lee, L. Lutz, A. Malinin, E.S. Seo, R. Sina, J. Wu, Y.S. Yoon, S.Y. Zinn University of Chicago P. Boyle, S. Swordy, S. Wakely Penn State University N.B. Conklin, S. Coutu, S.I. Mognet, **Ohio State University** P. Allison, J.J. Beatty University of Minnesota J.T. Childers, M.A. Duvernois University of Siena & INFN, Italy M.G. Bagliesi, G. Bigongiari, P. Maestro, P.S. Marrocchesi, R. Zei Ewha Womans University, S. Korea J.H. Han, H.J. Hyun, J.A. Jeon, J.K. Lee, S.W. Nam, I.H. Park, N.H. Park, J. Yang Northern Kentucky University S. Nutter Kent State University S. Minnick Kyungpook National University, S. Korea H. Park

Cosmic Rays – Questions & Models

- Cosmic rays impinge on Earth's atmosphere. Material source, acceleration mechanism, particle propagation history are important open questions.
- Widely accepted SNR model postulates particles from inter-stellar dust or gas, or super-nova ejecta, accelerated by interactions with magnetic fields in super-nova shocks. There are versions of the model that theorize additional re-acceleration after leaving source.
- SNR model predicts this mechanism can only accelerate efficiently up to ~10¹⁴×Z eV (where Z is charge of the particle), but ground-based measurements have recorded events with incident energies up to 1,000,000 times that. These are likely of extra galactic origin (possibly accelerated by Active Galactic Nuclei).

All-Particle Spectrum of Cosmic Rays

- Flux drops ×50 for ×10 increase in threshold energy
- Kink in all-particle spectrum (knee) near 10¹⁵ eV explained by SNR
- Need to confirm corresponding kink in H spectrum expected ~10¹⁴ eV
- Indications from ground-based experiments support this
- Need single experiment with wide energy range, large geometry factor & direct charge measurement to verify

Covering a Wide Spectrum:

Different Techniques at Different Energies

- □ At energies up to 10^{12} eV can use solenoids (e.g. Bess, AMS, etc.)
- At energies above 10¹⁴ eV can use air-shower experiments (e.g. KASCADE, AGASA, Fly's Eye, Auger, etc.)
- Above ~10²¹ eV ground-based experiments run out of statistics need future space-based down-looking air-shower experiments (e.g. EUSO, OWL)
- In critical interval of 10¹² eV 10¹⁴ eV need direct measurements, initially made by pioneering emulsion experiments (e.g. JACEE, etc.); being improved on by flight calorimeters (e.g. ATIC, CREAM, etc.) and TRDs (e.g. TRACER, CREAM etc.)
- Proton "knee" expected ~10¹⁴ eV need calorimeter for proton measurements with reasonable energy resolution

"Division of Labor"

Ground-based detectors (and orbiters looking down):

- Can "see" Cherenkov light, fluorescence, μ's, RF & shower tails charge ID of primary is model dependent, "H-like" & "Fe-like"
- Use Earth's atmosphere as "absorber", need only detection system;
 Power, weight & volume not significantly constrained on ground
- Cover huge areas (1000's of km²), exposure time of many years statistical sample allows energy reach of 10²¹ eV or more – good for measuring <u>all-particle spectrum</u> and <u>indications of composition</u> <u>changes</u> up to ultra high energies

Flight detectors for direct measurement:

- □ Absorber (if any) and active components must all be carried in payload
- □ Strict limits on power, weight, volume, flight duration statistics limited
- Energy & charge can be measured directly, with redundant systems cross-calibration, good resolution good for <u>individual element</u> <u>spectra up to ~10¹⁵ eV</u>

CREAM Science Objectives (Cosmic Ray Enegetics And Mass)

Measure elemental spectra from $<10^{12}$ eV to 10^{15} eV

- □ Measure the proton spectral index vs. those of heavier nuclei
- □ Search for predicted 'knee' in the proton spectrum near 10¹⁴ eV
- □ Check if the elemental composition changes near the all-particle 'knee'
- Measure the secondary/primary ratio in the TeV region to test propagation models of high energy cosmic rays
- Provide overlap with ground-based experiments to 'anchor' their models at the low end of their energy range

\rightarrow These Science objectives drive the Measurement Goals

CREAM Measurement Goals

- Collect > 10 each protons and He nuclei above 10¹⁵ eV in a series of long balloon flights
- Reconstruct 1 1000 TeV primary energy with absolute energy scale accurate to < 10% & no non-Gaussian high-end tails</p>
- \Box Reconstruct energy with resolution < 50%
- □ Reconstruct particle trajectory up to charge detectors
- □ Reconstruct primary charge well enough to identify elements
- □ Collect enough B and C data to reconstruct B/C ratio to ~ TeV
 - \rightarrow These Measurement Goals drive the detector design

Flight Instrument Design Constraints (typical values)

- □ Instrument weight ~1100 kg; payload weight ~2700 kg
- □ Instrument power ~400 W; payload power ~800 W
- □ Instrument volume $\sim 2 \times 2 \times 1 \text{ m}^3$; payload volume $\sim 2 \times 2 \times 2 \text{ m}^3$
- Flight duration (LDB) typically 10-15 days, record 42 days; ULDB capability being developed for 60 100 days
- □ Temperature cycles (with heaters, insulation, etc.) -10C ~ +40C
- □ Ambient pressure ~0.003 atmosphere (implications for HV, disks)
 - Need pressure vessel and/or potting
 - → Must optimize components, detector systems, thermal design, mechanical design, HV potting, etc.

CREAM Detector Systems

□ Timing-based Charge Detector (TCD)

- 2 layers of scintillator paddles read out by fast PMTs
- Measures primary charge in 3 nsec, resolution ~0.2e (fast measurement "beats" back-scatter)
- Provides High Z trigger (for Z>3)

□ Transition Radiation Detector (TRD)

- 2 modules, gas-filled tubes in foam matrix, Cherenkov layer between, low weight, large GF
- Measures Lorentz factor (for Z>3 nuclei) provides energy if mass is known
- No self-trigger, allows tracking

□ Calorimeter Module (calorimeter, hodoscopes, silicon charge detector)

- Induces interaction in flared graphite targets (weight-efficient, improves resolution)
- Measures energy through partial absorption of shower energy
- Thin tungsten/scintillating fiber sampling calorimeter, nearly linear response to hadron showers, energy resolution ~45% (leakage fluctuations), weight-efficient GF
- Provides H-Fe shower trigger (fully efficient ~1 TeV)
- SCD & hodoscopes measure charge, resolution ~0.1e (segmentation reduces back-scatter)
- Calorimeter, hodoscopes and SCD provide tracking

□ Trigger aperture ~2.2 m²sr

Exploded View of CREAM Instrument

- TRD height provides time for TCD readout
- Low TRD density allows large volume
- Flared low-Z (graphite) target
 - Increases interaction fraction of incident nuclei
 - Improves resolution through secondary interactions
 - Minimizes "shower aging" only 1 radiation length
- Thin calorimeter maximizes geometrical aperture
- Integrated mechanical design
 - Upper TRD supports TCD
 - Lower TRD supports Cherenkov
 - Upper target supports S0/S1 & SCD
 - Lower target supports S2
 - Calorimeter cover supports S3

C2CR - Prague CREAM - O. Ganel - UMD

CREAM Instrument Integration & Testing

September 12, 2005

C2CR - Prague CREAM - O. Ganel - UMD

CREAM Calibration

Challenges:

- Incident particle energy range of interest $\sim 1 1000$ TeV; Beam tests <350 GeV
- Dynamic ranges 12 18 bits in calorimeter, TCD and TRD
- Temperatures may vary from -10°C to +40°C in day/night cycle
- No access during flight, no assurance of recovery post-flight

Pre-flight calibration

- Beam tests with high-energy electrons, protons, nuclear fragments in calorimeter
- TRD beam test with muons, electrons, protons to cover wide range of $\boldsymbol{\gamma}$
- TCD muon runs, LED pulses, laser flashes, charge injection

Offline calibration from data

- Shower data provides inter-range calibration (low, mid, high) in calorimeter
- Periodic charge injection, LED flashes, pedestal runs
- TCD non-interacting nuclei at high end of charge range
- TRD minimum ionization levels of C & O events
- Cross-calibrate energy from TRD/TCD and calorimeter for Z>3 (~20 C,N,O,Fe/hr)

Accelerator Beam Testing at CERN's SPS

- □ TRD prototype
- □ TCD pair of crossed paddles
- Calorimeter Module
 - Calorimeter w/targets
 - Hodoscope (2 sets)
 - SCD

Sample Event Displays

Beam Test Results - SCD

SCD measurement of nuclear fragment charges (preliminary)

C2CR - Prague CREAM - O. Ganel - UMD

September 12, 2005

C2CR - Prague CREAM - O. Ganel - UMD

Beam Test Results - Calorimeter

Simulation vs. Beam Data

Beam Test Results - Calorimeter

Response to Electrons from 50 to 200 GeV

C2CR - Prague CREAM - O. Ganel - UMD

CREAM 2004/05 Flight

C2CR - Prague CREAM - O. Ganel - UMD

CREAM 2004/05 Flight

- □ Launch December 16, 2004 from McMurdo Station, Antarctica for nearly 42 days (!) (could have continued operating to design goal of >100 days); collected 4×10⁷ events
- □ Data processing and analysis ongoing; >10 papers presented at ICRC this year
- 2005/06 flight seeks to greatly increase sample of high energy shower events to push the proton and helium <u>statistical limit to a higher energy</u>

CREAM 2004/05 Flight - Calorimeter

CREAM 2004/05 Flight - SCD

September 12, 2005

C2CR - Prague CREAM - O. Ganel - UMD

CREAM 2004/05 Flight - TCD

September 12, 2005

C2CR - Prague CREAM - O. Ganel - UMD

CREAM 2004/05 Flight - TRD

Measurements of the energy deposited in the TRD tubes versus the normalized Cherenkov light signal during the flight (~1day).

September 12, 2005

CREAM 2004/05 Flight - Cherenkov

C2CR - Prague CREAM - O. Ganel - UMD

2004/05 Season Landing

September 12, 2005

2004/05 Season Recovery

Summary

- □ After nearly a century since their discovery, much is still uncertain about cosmic rays, including their source, acceleration & propagation.
- For different energy ranges and measurement types, different techniques are optimal.
 - For measuring elemental spectra of high energy protons and helium, a flight calorimeter is the only practical solution.
 - For measuring elemental spectra of high energy heavier nuclei a TRD is optimal.
- □ CREAM combines a calorimeter, TRD, and multiple charge detectors providing good measurement capability with cross calibration, for elemental spectra of $1 \le Z \le 26$ up to 10^{15} eV.
- CREAM's first, record-breaking LDB flight of nearly 42 days with ~2.2 m²sr trigger aperture collected > 4×10⁷ events comprising one of the most exciting cosmic ray data samples available. Preliminary results are very promising, and data analysis is proceeding.
- CREAM-II (w/o TRD) is set to launch in December 2005; CREAM is being refurbished for a planned 2006 flight.