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Colliders and Cosmic Rays -
Energetics

• Current Generation Hadron Colliders 
Reach Energies of ~2 TeV (Tevatron), ~14 
TeV (LHC)

• EeV Neutrino and Nucleon At Rest 
⇒ 43 TeV Center of Mass

• 100 EeV Neutrino 
⇒ 430 TeV Center of Mass!



Colliders and Cosmic Rays -
Baselines

• Colliders test only processes which 
occur over very short distances, 
propagation lengths

• “Long baseline”, atmospheric and solar 
neutrino experiments are less limited

• High energy cosmic neutrinos provide 
opportunity to probe neutrino properties 
over 100’s or 1000’s of Mpc



Colliders and Cosmic Rays -
Luminosity

• Cosmic ray luminosity tiny compared to
accelerator beams

• Cosmic neutrino luminosity 
unknown/uncontrolled

• Wide range of theoretical models of 
high energy and ultra-high energy 
cosmic neutrino spectrum



Plausible Sources of High 
Energy Cosmic Neutrinos

• Cosmic ray accelerators (gamma-ray 
bursts, active galactic nuclei, 
microquasars, etc.)

• Products of cosmic ray propagation 
(cosmogenic neutrino flux)

• Dark matter annihilations/decays
• Top-down models of cosmic ray origin



Sources of High Energy 
Cosmic Neutrinos

• Wide range of models
• Still, some predictions 

can be made with 
confidence

• Cosmogenic flux often 
called “guaranteed”

• Cosmic neutrinos 
associated with cosmic 
rays is required given 
hadronic acceleration



High-Energy Neutrino
Telescopes 

• AMANDA
-Several Years of Data

• ANTARES
-Under Deployment

• ICECUBE
-Under Deployment
-Full KM3 Volume
-Higher Energy Threshold



Ultra-High Energy Cosmic
Neutrino Experiments 

• PIERRE AUGER OBSERVATORY
-Recently Released First Data

(no neutrino data yet)

• ANITA
-Radio Antenna Balloon Flight
-First Flight Scheduled For Dec 2006

• EUSO/OWL
-Satellite/Space Station Based
-Enormous Aperture
-Future Uncertain



IceCube
• ~100 GeV Threshold (few TeV for showers)
• Full Kilometer Instrumented Volume
• Muon Tracks, EM/Hadronic Showers



IceCube

• Tau Neutrino Unique 
Events
-Double Bangs
-Lollipops

• PeV Thresholds
• Rare, But Interesting



Pierre Auger Observatory:
Deeply Penetrating,

Quasi-Horizontal Airshowers

• Most neutrino induced airshowers cannot be 
distinguished from hadronic/photonic primaries

• Hadronic/Photonic UHECRs interact at top of Earth’s
atmosphere; Neutrinos interact at all column depths 
(nearly) equally

• Nearly horizontal airshowers, generated deep inside 
of the atmosphere, can be identified as neutrino
initiated events



Pierre Auger Observatory:
Earth Skimming Tau Neutrinos

• UHE νe, νµ’s are efficiently absorbed through charged 
current interactions in the Earth

• ντ’s produce a τ which can decay before losing its 
energy (regeneration)

• Earth-skimming ντ’s can decay in the atmosphere, and 
be detected by Auger

Figure from Bertou et al., astro-ph/0104452



IceCube and Auger

• ICECUBE
-Sensitive above ~100 GeV
-km3 instrumented volume
-Observes:

muon tracks
CC/NC showers
tau unique events

• PIERRE AUGER
-Sensitive above ~107 GeV
-3000 km2 surface area
-Observes:

horizontal showers
upgoing tau neutrinos



The Role of Neutrino Astronomy
in Exploring Exotic Physics

• Focus on scenarios which benefit from the 
strengths of neutrino astronomy in contrast to 
collider programs:

-Models with substantial deviations from SM 
at energies beyond reach of colliders

-Models with substantial deviations from SM 
over timescales and/or propagation lengths 
beyond the range observable at colliders



TeV Scale Gravity

• ECM ~ MPL, KK Graviton Exchange

• ECM > MPL, String Resonances

• ECM >> MPL, Black Hole Production



Kaluza-Klein Gravitons
• Model Dependent Cross Sections
• Not Valid Very Far Above Eν~TeV2/2mp~PeV

Alvarez, Halzen, Han, Hooper, PRL hep-ph/0107057



TeV String Resonances
• Valid At All Energies
• Only Mild Model Dependence (Chan-Patton)

Friess, Han and Hooper, PLB, hep-ph/0204112



Microscopic Black Hole 
Production

• At center-of-mass energies above 
fundamental Planck scale, black holes 
can be formed

• Naïve picture suggests geometric cross 
section, σ ~ π R2

sch

• TeV black holes rapidly Hawking radiate



Microscopic Black Hole 
Production

• Valid At All Energies
• Dominates at Very High Energies

See Anchordoqui, Feng, Goldberg and Shapere, PLB hep-ph/0311265;
PRD hep-ph/0307228; PRD hep-ph/0112247



Microscopic Black Hole 
Production

• Likely the most easily observed 
signature of TeV gravity

• Open questions remain:
-Energy loss to gravitational waves
-Many model dependent features
-P brane production likely to dominate,

but behavior of Hawking radiation 
unknown



TeV Scale Gravity At Auger

• Sensitive above 100 PeV

• Beyond range of KK Graviton exchange

• Very sensitive to string resonances, 
black hole production



TeV Scale Gravity At Auger

• Rate of quasi-horizontal showers
grows, while Earth skimming
showers are suppressed

Model QH/ES 
Ratio

SM 0.05
2 TeV 0.11
1 TeV 2.1

Anchordoqui, Han, Hooper and Sarkar, hep-ph/0508312



TeV Scale Gravity At Auger

Model QH/ES Ratio

SM 0.05
8 TeV 0.10
3 TeV 0.54
2 TeV 2.0
1 TeV 36.0

• Auger is exceptionally well
suited for probing microscopic
black hole production

Anchordoqui, Han, Hooper and Sarkar, hep-ph/0508312



TeV Scale Gravity At IceCube

• Most Sensitive in TeV-PeV Range
• Well Suited To Probe KK Graviton 

Exchange
• Black Hole Production Generates 

Observable Muons, Taus and Showers



TeV Scale Gravity At IceCube
• Cross Section Measurements
• Comparison of Upgoing to Downgoing Events

Alvarez, Han, Halzen and Hooper, PRL hep-ph/0107057



TeV Scale Gravity At IceCube

• Cross Section Measurements
• Comparison of Upgoing to Downgoing Events

Hooper, PRD hep-ph/0203239



TeV Scale Gravity At IceCube
• Angular Distribution of Events

Alvarez, Han, Halzen and Hooper, PRD hep-ph/0202081



TeV Scale Gravity At IceCube:
Multi-Channel Measurements

• KK gravitons, string resonances 
contribute to shower rate only

• Use shower/muon ratio to test for
deviations from SM prediction

• Hawking radiation from microscopic
black holes generates taus, muons and 
showers



SM Electroweak Instanton 
Induced Interactions

• Transitions between degenerate vaccua (with 
different B+L) are possible within the context of 
the SM

• Below “Sphaleron” mass, π MW/αW ~ 8 TeV, such
transitions are exponentially suppressed

• Above this energy, enormous cross sections may 
be expected for such processes

See: Ringwald Nuc Phys B (1990), Aoyama and Goldberg PLB (1987)



Instanton Induced Interactions
• Neutrino-nucleon cross section, based on 

QCD-like picture and data
• Ideally suited for Auger

Ahlers, Ringwald and Tu, astro-ph/0506698



Instantons At Auger

• Substantial deviations expected above 1010 GeV
• Roughly 4 QH showers/yr predicted, roughly 30 times more 

than CC/NC alone
• Very strong probe of Electroweak Instanton Induced 

Interactions
Anchordoqui, Han, Hooper and Sarkar, hep-ph/0508312



Long Baseline Measurements
• Colliders probe phenomena at (very) sub-second 

scales
• Low energy neutrino experiments probe scales 

of Γ / m ~ 10-4 sec / eV (sun)
(supernovae may, in future, improve on this)

• High energy cosmic neutrinos may improve on 
this by a factor of:

~ 107 (L / 100 Mpc) (10 TeV / Eν)
• Powerful test of neutrino decay, quantum 

decoherence, Lorentz violation, …



Cosmic Neutrino Flavors

• Astrophysical accelerators generate neutrinos 
through charged pion decay:

π+/- ⇒ µ νµ⇒ e νe νµ νµ
• Neutrinos produced in the ratio:

νe:νµ:ντ = 1 : 2 : 0
• After oscillations, this leads to: νe:νµ:ντ ≈ 1 : 1 : 1
• Caveat: Energy losses in source might modify

(Kashti and Waxman, astro-ph/0507599)



Neutrino Decay
• Scenario 1: All mass eigenstates decay to lightest mass 

eigenstate (or invisible) with normal hierarchy; flavor 
ratios of:
νe:νµ:ντ = cos2θS : (1/2) sin2θS : (1/2) sin2θS ≈ 6 : 1 : 1

• Scenario 2:  Same, but with inverted hierarchy:
νe:νµ:ντ = U2

e3 : U2
µ3 : U2

τ3 ≈ 0 : 1 : 1

• Scenario 3:  (only) ν3 decays invisibly; with normal 
hierarchy, flavor ratios of:

νe:νµ:ντ ≈ 2 : 1 : 1

• Many other scenarios possible



Measuring Cosmic Neutrino 
Flavor Ratios

• With IceCube:
-Muons/showers roughly translates to νµ/νtot

-Tau unique events provide confirmation

• With Auger:
-ES/QH roughly translates to ντ /νtot

-Low event rate yields less sensitivity 

Beacom, Bell, Pakvasa, Hooper and Weiler, hep-ph/0307025

Anchordoqui, Han, Hooper and Sarkar, hep-ph/0508312



Flavor Ratios At IceCube
• Ratio of muons to showers translates to flavor ratio
• Example: TeV threshold,

E2 dN/dE = 10-7 GeV cm-2 s-1, 2 x 10-8 GeV cm-2 s-1 

Beacom, Bell, Pakvasa, Hooper and Weiler, hep-ph/0307025



Flavor Ratios At Auger

• Deviations in QH/ES translate to deviations in
flavor ratios

• Limited potential

Anchordoqui, Han, Hooper and Sarkar, hep-ph/0508312



Quantum Decoherence
• In many pictures of quantum gravity, information 

loss may be expected during propagation (black 
hole formation/radiation, quantum foam)

• Regardless of initial flavors, cosmic neutrinos 
gradually evolve toward:

νe : νµ : ντ = 1 : 1 : 1

• This is the similar to the prediction from pion 
decay (after oscillations), and thus is impossible 
to distinguish



Quantum Decoherence
• To probe effects of quantum decoherence, 

another (non-pion) source of neutrinos is 
needed

• Photodisintegration of UHE nuclei generates 
neutrons which decay producing uniquely
electron anti-neutrinos

• After oscillations, such a source yields:
νe : νµ : ντ ≈ 3 : 1 : 1

• Potentially distinguishable from quantum 
decoherence effects

Hooper, Morgan and Winstanley, PLB, hep-ph/0410094



UHE Neutron Sources and 
Quantum Decohence

• UHE neutrons can travel multi-kpc scales without 
decaying

• Neutral UHECRs can reveal point sources
• Can be used to infer the presence of lower energy 

neutrons which decay generating (anti-)neutrinos
• Cygnus region point source detected by AGASA in 

EeV range at 4-4.5σ significance (4% of flux)
• Supporting data from Sugar, as well as galactic 

plane excess seen by Fly’s Eye

Anchordoqui, Goldberg, Gonzalez-Garcia, Halzen, Hooper, Sarkar and Weiler,
PRD hep-ph/0506168



Summary and Conclusions

• High energy neutrino astronomy provides a 
new window into possible exotic physics 
scenarios which are beyond the reach of
planned collider experiments

• Very high energies, very long baselines are in 
many cases uniquely assessable with 
neutrino astronomy



Summary and Conclusions

• Such scenarios include (but are not limited to):
-Low scale quantum gravity
-Electroweak instanton induced interactions
-Neutrino decay
-Quantum Decoherence



The Future of Particle Physics
• Greater energies scales continue to be explored with 

colliders (Tevatron, LHC, ILC, VLHC,…)
• Greater energies prove to be increasingly expensive 

and technically challenging
• Future of collider-based particle physics is uncertain
• To overcome these challenges, a broad vision of 

experimental particle physics is needed
• Cosmic ray physics, neutrino astronomy, gamma-ray 

astronomy and early Universe cosmology each 
contribute to our understanding of particle properties 
and interactions under conditions inaccessible to 
colliders

• Complementary should be taken fully advantage of



The End



Long Lived Staus

• In Gauge Mediated SUSY Breaking 
(GMSB) models, NLSP stau can be 
long lived, eventually decaying to 
gravitino LSP

• Stau pairs generated in HE neutrino 
interactions are potentially observable 
at IceCube

(Albuquerque, Burdman and Chacko hep-ph/0312197)
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