Probing Exotic Physics With Cosmic Neutrinos

Dan Hooper Fermi National Laboratory

Based in part on:

- Anchordoqui, Han, Hooper and Sarkar, (Sub. to Astropart. Phys.) hep-ph/0508312
- Han and Hooper, New J. Phys, hep-ph/0408348
- Beacom, Bell, Hooper, Pakvasa and Weiler, PRL, hep-ph/0211305; PRD hep-ph/0307025
- Hooper, Morgan and Winstanley, PLB, hep-ph/0410094; PRD, hep-ph/0506091

Colliders and Cosmic Rays -Energetics

- Current Generation Hadron Colliders Reach Energies of ~2 TeV (Tevatron), ~14 TeV (LHC)
- EeV Neutrino and Nucleon At Rest ⇒ 43 TeV Center of Mass
- 100 EeV Neutrino

 \Rightarrow 430 TeV Center of Mass!

Colliders and Cosmic Rays -Baselines

- Colliders test only processes which occur over very short distances, propagation lengths
- "Long baseline", atmospheric and solar neutrino experiments are less limited
- High energy cosmic neutrinos provide opportunity to probe neutrino properties over 100's or 1000's of Mpc

Colliders and Cosmic Rays -Luminosity

- Cosmic ray luminosity tiny compared to accelerator beams
- Cosmic neutrino luminosity
 unknown/uncontrolled
- Wide range of theoretical models of high energy and ultra-high energy cosmic neutrino spectrum

Plausible Sources of High Energy Cosmic Neutrinos

- Cosmic ray accelerators (gamma-ray bursts, active galactic nuclei, microquasars, etc.)
- Products of cosmic ray propagation (cosmogenic neutrino flux)
- Dark matter annihilations/decays
- Top-down models of cosmic ray origin

Sources of High Energy Cosmic Neutrinos

- Wide range of models
- Still, some predictions can be made with confidence
- Cosmogenic flux often called "guaranteed"
- Cosmic neutrinos associated with cosmic rays is required given hadronic acceleration

High-Energy Neutrino Telescopes

- AMANDA
 -Several Years of Data
- ANTARES
 -Under Deployment
- ICECUBE

 -Under Deployment
 -Full KM³ Volume
 -Higher Energy Threshold

Ultra-High Energy Cosmic Neutrino Experiments

- PIERRE AUGER OBSERVATORY

 Recently Released First Data
 (no neutrino data yet)
- ANITA

 Radio Antenna Balloon Flight
 First Flight Scheduled For Dec 2006
- EUSO/OWL

 Satellite/Space Station Based
 Enormous Aperture
 Future Uncertain

IceCube

- ~100 GeV Threshold (few TeV for showers)
- Full Kilometer Instrumented Volume
- Muon Tracks, EM/Hadronic Showers

IceCube

- Tau Neutrino Unique Events

 Double Bangs
 Lollipops
- PeV Thresholds
- Rare, But Interesting

Pierre Auger Observatory: Deeply Penetrating, Quasi-Horizontal Airshowers

- Most neutrino induced airshowers cannot be distinguished from hadronic/photonic primaries
- Hadronic/Photonic UHECRs interact at top of Earth's atmosphere; Neutrinos interact at all column depths (nearly) equally
- Nearly horizontal airshowers, generated deep inside of the atmosphere, can be identified as neutrino initiated events

Pierre Auger Observatory: Earth Skimming Tau Neutrinos

- UHE $\nu_e,\,\nu_\mu$'s are efficiently absorbed through charged current interactions in the Earth
- v_{τ} 's produce a τ which can decay before losing its energy (regeneration)
- Earth-skimming ν_τ 's can decay in the atmosphere, and be detected by Auger

Figure from Bertou et al., astro-ph/0104452

IceCube and Auger

ICECUBE

-Sensitive above ~100 GeV -km³ instrumented volume -Observes: muon tracks CC/NC showers tau unique events

• PIERRE AUGER

-Sensitive above ~10⁷ GeV
-3000 km² surface area
-Observes:

horizontal showers
upgoing tau neutrinos

The Role of Neutrino Astronomy in Exploring Exotic Physics

 Focus on scenarios which benefit from the strengths of neutrino astronomy in contrast to collider programs:

-Models with substantial deviations from SM at energies beyond reach of colliders

-Models with substantial deviations from SM over timescales and/or propagation lengths beyond the range observable at colliders

TeV Scale Gravity

E_{CM} ~ M_{PL}, KK Graviton Exchange

• E_{CM} > M_{PL}, String Resonances

• $E_{CM} >> M_{PL}$, Black Hole Production

Kaluza-Klein Gravitons

- Model Dependent Cross Sections
- Not Valid Very Far Above E_v~TeV²/2m_p~PeV

Alvarez, Halzen, Han, Hooper, PRL hep-ph/0107057

TeV String Resonances

- Valid At All Energies
- Only Mild Model Dependence (Chan-Patton)

Friess, Han and Hooper, PLB, hep-ph/0204112

Microscopic Black Hole Production

- At center-of-mass energies above fundamental Planck scale, black holes can be formed
- Naïve picture suggests geometric cross section, $\sigma \thicksim \pi \, {\rm R^2}_{\rm sch}$
- TeV black holes rapidly Hawking radiate

Microscopic Black Hole Production

- Valid At All Energies
- Dominates at Very High Energies

See Anchordoqui, Feng, Goldberg and Shapere, PLB hep-ph/0311265; PRD hep-ph/0307228; PRD hep-ph/0112247

Microscopic Black Hole Production

- Likely the most easily observed signature of TeV gravity
- Open questions remain:
 - -Energy loss to gravitational waves
 - -Many model dependent features

-P brane production likely to dominate, but behavior of Hawking radiation unknown

TeV Scale Gravity At Auger

Sensitive above 100 PeV

Beyond range of KK Graviton exchange

 Very sensitive to string resonances, black hole production

TeV Scale Gravity At Auger

 Rate of quasi-horizontal showers grows, while Earth skimming showers are suppressed

Model	QH/ES Ratio
SM	0.05
2 TeV	0.11
1 TeV	2.1

Anchordoqui, Han, Hooper and Sarkar, hep-ph/0508312

TeV Scale Gravity At Auger

 Auger is exceptionally well suited for probing microscopic black hole production

Anchordoqui, Han, Hooper and Sarkar, hep-ph/0508312

Model	QH/ES Ratio
SM	0.05
8 TeV	0.10
3 TeV	0.54
2 TeV	2.0
1 TeV	36.0

- Most Sensitive in TeV-PeV Range
- Well Suited To Probe KK Graviton Exchange
- Black Hole Production Generates
 Observable Muons, Taus and Showers

- Cross Section Measurements
- Comparison of Upgoing to Downgoing Events

Alvarez, Han, Halzen and Hooper, PRL hep-ph/0107057

- Cross Section Measurements
- Comparison of Upgoing to Downgoing Events

Hooper, PRD hep-ph/0203239

Angular Distribution of Events

Alvarez, Han, Halzen and Hooper, PRD hep-ph/0202081

TeV Scale Gravity At IceCube: Multi-Channel Measurements

- KK gravitons, string resonances contribute to shower rate only
- Use shower/muon ratio to test for deviations from SM prediction
- Hawking radiation from microscopic black holes generates taus, muons and showers

SM Electroweak Instanton Induced Interactions

- Transitions between degenerate vaccua (with different B+L) are possible within the context of the SM
- Below "Sphaleron" mass, $\pi M_W/\alpha_W \sim 8$ TeV, such transitions are exponentially suppressed
- Above this energy, enormous cross sections may be expected for such processes

See: Ringwald Nuc Phys B (1990), Aoyama and Goldberg PLB (1987)

Instanton Induced Interactions

- Neutrino-nucleon cross section, based on QCD-like picture and data
- Ideally suited for Auger

Ahlers, Ringwald and Tu, astro-ph/0506698

Instantons At Auger

- Substantial deviations expected above 10¹⁰ GeV
- Roughly 4 QH showers/yr predicted, roughly 30 times more than CC/NC alone
- Very strong probe of Electroweak Instanton Induced
 Interactions

Anchordoqui, Han, Hooper and Sarkar, hep-ph/0508312

Long Baseline Measurements

- Colliders probe phenomena at (very) sub-second scales
- Low energy neutrino experiments probe scales of Γ / m ~ 10⁻⁴ sec / eV (sun) (supernovae may, in future, improve on this)
- High energy cosmic neutrinos may improve on this by a factor of:

~ $10^7 (L / 100 Mpc) (10 TeV / E_{v})$

• Powerful test of neutrino decay, quantum decoherence, Lorentz violation, ...

Cosmic Neutrino Flavors

 Astrophysical accelerators generate neutrinos through charged pion decay:

 $\pi^{+/-} \Rightarrow \mu \nu_{\mu} \Rightarrow e \nu_{e} \nu_{\mu} \nu_{\mu}$

• Neutrinos produced in the ratio:

 $v_{e}:v_{\mu}:v_{\tau} = 1:2:0$

- After oscillations, this leads to: $v_e:v_u:v_\tau \approx 1:1:1$
- Caveat: Energy losses in source might modify

(Kashti and Waxman, astro-ph/0507599)

Neutrino Decay

 <u>Scenario 1</u>: All mass eigenstates decay to lightest mass eigenstate (or invisible) with normal hierarchy; flavor ratios of:

 $v_{e}:v_{\mu}:v_{\tau} = \cos^{2}\theta_{S}: (1/2) \sin^{2}\theta_{S}: (1/2) \sin^{2}\theta_{S} \approx 6: 1: 1$

- <u>Scenario 2</u>: Same, but with inverted hierarchy: $v_e:v_{\mu}:v_{\tau} = U_{e3}^2: U_{\mu3}^2: U_{\tau3}^2 \approx 0:1:1$
- Scenario 3: (only) v_3 decays invisibly; with normal hierarchy, flavor ratios of:

 $v_{e}:v_{\mu}:v_{\tau} \approx 2:1:1$

• Many other scenarios possible

Measuring Cosmic Neutrino Flavor Ratios

With IceCube:

-Muons/showers roughly translates to ν_{μ}/ν_{tot} -Tau unique events provide confirmation

Beacom, Bell, Pakvasa, Hooper and Weiler, hep-ph/0307025

• With Auger:

-ES/QH roughly translates to ν_{τ}/ν_{tot} -Low event rate yields less sensitivity

Anchordoqui, Han, Hooper and Sarkar, hep-ph/0508312

Flavor Ratios At IceCube

- Ratio of muons to showers translates to flavor ratio
- Example: TeV threshold,
 - E² dN/dE = 10⁻⁷ GeV cm⁻² s⁻¹, 2 x 10⁻⁸ GeV cm⁻² s⁻¹

Beacom, Bell, Pakvasa, Hooper and Weiler, hep-ph/0307025

Flavor Ratios At Auger

- Deviations in QH/ES translate to deviations in flavor ratios
 Quasi Horizotal/Upgoing Showers
- Limited potential

Anchordoqui, Han, Hooper and Sarkar, hep-ph/0508312

Quantum Decoherence

- In many pictures of quantum gravity, information loss may be expected during propagation (black hole formation/radiation, quantum foam)
- Regardless of initial flavors, cosmic neutrinos gradually evolve toward:

 $v_{e}: v_{\mu}: v_{\tau} = 1:1:1$

 This is the similar to the prediction from pion decay (after oscillations), and thus is impossible to distinguish

Quantum Decoherence

- To probe effects of quantum decoherence, another (non-pion) source of neutrinos is needed
- Photodisintegration of UHE nuclei generates neutrons which decay producing *uniquely* electron anti-neutrinos
- After oscillations, such a source yields:

 $v_e: v_u: v_\tau \approx 3:1:1$

Potentially distinguishable from quantum decoherence effects

Hooper, Morgan and Winstanley, PLB, hep-ph/0410094

UHE Neutron Sources and Quantum Decohence

- UHE neutrons can travel multi-kpc scales without decaying
- Neutral UHECRs can reveal point sources
- Can be used to infer the presence of lower energy neutrons which decay generating (anti-)neutrinos
- Cygnus region point source detected by AGASA in EeV range at 4-4.5 σ significance (4% of flux)
- Supporting data from Sugar, as well as galactic plane excess seen by Fly's Eye

Anchordoqui, Goldberg, Gonzalez-Garcia, Halzen, Hooper, Sarkar and Weiler, PRD hep-ph/0506168

Summary and Conclusions

- High energy neutrino astronomy provides a new window into possible exotic physics scenarios which are beyond the reach of planned collider experiments
- Very high energies, very long baselines are in many cases *uniquely* assessable with neutrino astronomy

Summary and Conclusions

Such scenarios include (but are not limited to):

 Low scale quantum gravity
 Electroweak instanton induced interactions
 Neutrino decay
 Quantum Decoherence

The Future of Particle Physics

- Greater energies scales continue to be explored with colliders (Tevatron, LHC, ILC, VLHC,...)
- Greater energies prove to be increasingly expensive and technically challenging
- Future of collider-based particle physics is uncertain
- To overcome these challenges, a broad vision of experimental particle physics is needed
- Cosmic ray physics, neutrino astronomy, gamma-ray astronomy and early Universe cosmology each contribute to our understanding of particle properties and interactions under conditions inaccessible to colliders
- Complementary should be taken fully advantage of

The End

Long Lived Staus

- In Gauge Mediated SUSY Breaking (GMSB) models, NLSP stau can be long lived, eventually decaying to gravitino LSP
- Stau pairs generated in HE neutrino interactions are potentially observable at IceCube

(Albuquerque, Burdman and Chacko hep-ph/0312197)