QCD Results from the Tevatron at $\sqrt{s}=1.96\,\text{TeV}$

From Colliders to Cosmic Rays

September 7-13, 2005, Prague

Alexander Kupčo

on behalf of the CDF and $\mathsf{D}\ensuremath{\emptyset}$ collaborations

Institute of Physics, Center for Particle Physics, Prague

QCD at hadron-hadron colliders

- high p_T physics
 - central inclusive jet production
- multi-parton radiation
 - dijet azimuthal decorrelations
 - jet shapes
- soft physics
 - studies of soft underlying event

Tevatron

- Long Term Luminosity Plans (2009)
 - base goal: 4.4 fb^{-1} , design: 8.5 fb^{-1}

- Run I \rightarrow Run II
- $1.8 \,\mathrm{TeV} \rightarrow 1.96 \,\mathrm{TeV}$
- luminosity upgrade
- Tevatron operates now at $\mathcal{L} \sim 1.2 \times 10^{32} \,\mathrm{cm}^{-2} \cdot \,\mathrm{s}^{-1}$

CDF and DØ detectors

 lead/iron + scinitillator/gas chamber calorimeter

- uranium + liquid argon calorimeter
- the same calorimeters as in RunI faster readout and trigger electronics
 - 396 ns between pp̄ bunches in RunII; $2.4 \,\mu\text{s}$ in RunI
- completely new tracking detectors (in case of DØ added also magnet)

Jets

calorimeter jet

- jet is a collection of calorimeter towers
- correct for detector effects (calibration, resolution, ...)

▷ particle jet

- no theory from the first principles of QCD
- predictions are model dependent

Tie ⊳ parton jet

- hard parton jets (fixed order calculations) or after developement of parton showers (resummation)

▷ Jet algorithm

- geometrical definition (cone algorithms): midpoint algorithm in Run II
- pQCD motivated algorithms (k_T -algorithms)

adrons

"calorimeter jet"

"particle jet"

"parton jet"

CH

FH

EM

High p_T jets in RunII

Central jet inclusive cross sections $(D\emptyset)$

- dominant experimental uncertainty jet energy calibration
- good agreement with NLO QCD over 8 orders of magnitude
- theory uncertainty at high p_T is dominated by uncertainty on gluon density at large \boldsymbol{x}

Central jet inclusive cross sections (CDF)

data corrected to the parton level

- in Run I, possible excess observed at high p_T
- Run II data consistent with CTEQ6.1M PDF

C2CR 2005, Prague page 8

Inclusive cross section with k_T jets

- $d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2/D^2$ - $d_i = p_{Ti}^2$
- recombine closest pair
- infrared/collinear safe
- no split/merge procedure

- measured for D = 0.5, 0.7, 1.0
- good agreement with NLO QCD

Dijet azimuthal decorrelations

- different regions of $\Delta \phi_{dijet}$ are sensitive to different aspects of multiparton emissions
- a clean and simple way to study QCD radiative processes
 - reduced sensitivity to jet energy calibration

• Phys.Rev.Lett.94:221801,2005

$\Delta \phi$ - comparison with pQCD

• comparison with $2 \rightarrow 3$ NLO calculations (these were not available in Run I)

• agreement with NLO QCD except $\Delta\phi \rightarrow \pi$ where resummation is needed

$\Delta\phi$ - comparison with MC

- HERWIG shows a good agreement with the data
- not true for default setting of PYTHIA
 - the distribution is sensitive to PARP (67) which controls the maximal allowed virtuality in the initial state parton shower
 - PARP(67)=2.5 fits the data well

The plot demonstrates the impact on tuning the MC generators

$\Delta \phi$ - and partonic shower in Pythia

Sensitivity only to the maximal allowed virtuality in ISR

Jet shapes

- sensitive to multi-parton radiation from primary hard parton
- \Rightarrow test of parton shower models
- $\bullet\,$ sensitive to α_S and its running
- different for quark/gluon induced jets
- for low p_T jets sensitive to the soft underlying physics
- measured with midpoint algorithm
- Phys. Rev. D71, 112002 (2005)

$$\Psi(r) = \frac{1}{N_{jet}} \sum_{jets} \frac{p_T(0, r)}{p_T(0, R)}$$

Jet shapes measurement

- central jets; measurement available for whole range of jet $\ensuremath{p_T}$
- default PYTHIA (w/wo MPI) too narrow
- PYTHIA Tune A (based on CDF Run I data on soft underlying event) good description
- Herwig too narrow jets at low p_T

Alexander Kupčo, Institute of Physics, Prague

C2CR 2005, Prague page 15

Quark/Gluon Jet Shapes

Alexander Kupčo, Institute of Physics, Prague

C2CR 2005, Prague page 16

Run I underlying event studies by CDF

• "underlying event":

parton showers, beam remnants, other soft part of underlying event

Phys.Rev.D65:092002,2002
 study of charged particle flow
 in various kinematic domains

Tune of Pythia model of soft physics

Parameter	TuneA	TuneB			
MSTP(81)	1	1	multiple scattering (on/off)		
MSTP(82)	4	4	model of mult. scatt.		 same model as for
PARP(82)	2.0 GeV	1.9 GeV	regularization of $\sigma_{2\to 2}$: $p_T^2 \rightarrow (p_T^2 + p_{T0}^2)$		minimum bias events
PARP(83)	0.5	0.5	controls matter distribution in proton in transverse plane controls fraction of scat. gluons		 smooth transition between
PARP(84)	0.4	0.4			
PARP(85)	0.9	1.0			
PARP(86)	0.95	1.0	and quarks and color	flow	
PARP(89)	1.8 TeV	1.8 TeV	controls running	-	
PARP(90)	0.25	0.25	of p_{T0} with \sqrt{s}	1.00	Transverse" Charged Particle Density: dN/dηdφ
PARP(67)	4	1	controls ISR	CD	F Preliminary PYTHIA 6.206 (Set A)
	old def.	new def.	Densi	0.75 -	data uncorrected PARP(67)=4
 tune related with PDF (CTEQ5L) TuneA is used by CDF and DØ JIMMY: MPI for Herwig 					

C2CR 2005, Prague

page 18

New Run II CDF results

- more luminosity: $\mathcal{L} = 385 \, \mathrm{pb}^{-1}$
- new topology: leading jet, back-to-back jets
- data corrected to particle level
- added calorimeter information: study of E_T density

p_T sum in MIN and MAX regions

- TransMIN and TransMAX
 - defined event-by-event
 - transverse region with the smallest (largest) charged p_T sum density
- TransMAX: mixture of hard and soft physics
- TransMIN: more sensitive to soft physics

E_T sum in MIN and MAX regions

- for the 1st time, information about E_T density from calorimeter is available
- TransMIN: large discrepancy between the data and models
- Underestimated production of very soft particles ($p_T < 0.5 \text{ GeV}$)? Could it be tuned?

TransDIF region

Alexander Kupčo, Institute of Physics, Prague

C2CR 2005, Prague page 22

Summary

- With respect to Runl, the reach in jet p_T was significantly extended for jet inclusive p_T cross sections
 - testing pQCD at distances not explored before
 - cross section consistent with QCD over 8 orders of magnitude
 - new jet algorithms with better theoretical behavior (cone midpoint, k_T -algorithms) are being used
 - reducing experimental errors will lead to better understanding of gluon content of proton at high \boldsymbol{x}
- Rich program of studying various aspects of pQCD multi-parton radiation and soft physics
- Good progress in understanding and modeling the underlying event has been made. However, we have not a perfect fit yet that would describe all observed features. Work on new improved Run II tunes is going on.