Muon production in extensive air showers and its relation to accelerator measurements

62-

Christine Meurer¹ Johannes Blümer² Ralph Engel¹ Andreas Haungs¹ Markus Roth²

¹ Forschungszentrum Karlsruhe/Germany ² University of Karlsruhe/Germany

- Muons in extensive air showers (EAS)
- Relation of muons to hadronic interactions
- Comparison: EAS fixed target experiment
- Investigation of phase space
- Existing accelerator measurements
- Conclusions

Motivation

ų.

Interpretation of CR data relies heavily on MC simulations

MC uncertainties arise predominantly from hadronic interaction models

Muons are one of the main ingredients to infer E, A

Muon component is very sensitive to hadronic interactions

10¹⁹ Akeno * PROTON KASCA DE (OG SJET 01) KASCADE H ▲ HiRes I RUNJOB KASCADE He 18 HiRes II sec -1 sr -1 eV ^{1.5}) 10 KASCADE heavy direct data AGASA KASCA DE (SIBYLL 2.1) AUGER 2005 KASCADE H KASCADE He 10" KASCADE heavy 10 Flux E ²⁵ J(E) (m RUNIO LACEE ATIC MUBEE 10 SOKOL KASCADE-singleh 1014 proto n data -Grande Pierre Auger Observatory KASCADE 10 10¹⁷ 1015 1013 1014 1016 10¹⁸ 10 20 10¹⁹ 1021

(eV/particle)

(see T. Pierog's talk)

Which hadronic interactions are of major importance for muon production?

Energy

Muon production in EAS

- On average 6 interactions before muon production
- Number of generations increases with smaller ۲ muon energy threshold

- **CORSIKA simulations:**
- QGSJet 01
- **GHEISHA**

Muon energy on ground

Last hadronic interaction

EAS vs fixed target experiment

Grandmother particle = beam particle Mother particle = secondary particle

- + Several targets
- + Forward direction accessible
- + Relevant energy range: 10-400 GeV

HELMHOLTZ GEMEINSCHAFT

Selection of lateral range and energy

proton $E = 10^{15}eV \quad \theta = 0^{\circ}$

Energy of grandmother particle $\langle E_{kin} \rangle$ smaller for larger distances

Experiment	KASCADE	Grande
R(m)	50-200	200-500
Energy range (GeV)	80-400	30-60
$\langle E_{kin} \rangle$ (GeV)	160	40

C2CR 10.09.2005

Rapidity of pions

KASCADE range: 50-200m Nucleons (~160GeV) + Air

Rapidity:

Rapidity of pions

Rapidity of kaons

Rapidity of kaons

KASCADE range: 50-200m Nucleons (~160GeV) + Air

fixed target, p+air π dr Z/NP N/I NP N/I fixed target, p+C p_t distribution in EAS EAS, p+air similar to p, distribution in fixed target simulation. \rightarrow Low transverse momenta of interest 10⁻⁴ 10⁻⁵ 10⁻⁶ 1.5 0.5 D p, (GeV)

KASCADE range: 50-200m Nucleons (~160GeV) + Air

K fixed target, p+air fixed target, p+C p_t distribution in EAS EAS, p+air similar to p_t distribution in fixed target simulation. 10⁻³ \rightarrow Low transverse momenta of interest **10⁻⁴** 10⁻⁵ 1.5 0.5 0 p, (GeV)

Phase space: E~160GeV

KASCADE range: 50-200m; Nucleons (~160GeV) + Air

KASCADE-Grande range: 200-500m; Nucleons (~40GeV) + Air

Vertical shower: 0°

KASCADE range: 50-200m; Nucleons (~160GeV) + Air

Inclined shower: 60°

KASCADE range: 50-200m; Nucleons (~160GeV) + Air

Forward hemisphere even more important for inclined showers

Needed measurements

MIPP

Main Injector Particle Production Experiment (FNAL-E907) Horizontal cut plane

Time of Flight time-of-flight scintillators drift chambers HARP beam-muon identifier PS 214 Chambers Jolly Green Gia electron identifier Cerenkov EM shower detector TPC + RPCs in solenoid magnet threshold Cherenkov RICH dipole magnet **Neutron Calorimeter** J. Panman

C2CR 10.09.2005

Christine Meurer

beam

24/25

- Interpretation of CR data relies heavily on MC simulations
- Muons are main ingredients to infer E, A
- Similarity between hadron production in EAS and fixed target experiments
- Relevant hadronic interactions for muon production are in the
 - energy range: 10 1000 GeV
 - phase space region: low p_t and forward direction
- Only a few measurements available in phase space region important for EAS
- Region accessible by fixed target experiments like, for example, HARP, NA49 and MIPP

References

[Baker61]	Phys. Rev. Lett. 7 (1961) 101	(AGS)
[Dekkers65]	Phys. Rev. B 137 (1965) 962	(CERN)
[Lundy65]	Phys. Rev. Lett. 14 (1965) 504	(ZGS)
[Allaby70]	CERN Yellow Report 70-12 (1970)	(CERN)
[Cho71]	Phys. Rev. D 4 (1971) 1967	(ZGS)
[Eichten72]	Nucl. Phys. B 44 (1972) 333	(CERN)
[Antreasyan79]	Phys. Rev. D 19 N3 (1979) 764	(Fermilab)
[Bartom83]	Phys. Rev. D 27 (1983) 2580	(Fermilab)
[Abbott92]	Phys. Rev. D 45 (1992) 3906	(AGS)