

The BAIKAL Neutrino Telescope: from NT200 to NT200+

Ralf Wischnewski

DESY-Zeuthen

From Colliders to Cosmic Rays, Prague, 12.9.2005

Outline:

- Physics Motivation + Detection Channels
- The Detectors: NT200 and NT200+
- NT200+ first light
- Physics Results from NT200: 1998-2002 (selected)
- Summary

For fun, see also CernCourier 7/8-2005

Astrophysical v's: Two detection methods

Baikal Collaboration: Russia – Germany

- Institute of Nuclear Research, Moscow
- Moscow State University
- DESY Zeuthen
- Irkutsk State University
- Nishni Novgorod State Technical Univer
- State Marine Technical University, St.P
- Kurchatov Institute, Moscow
- JINR, Dubna

~45 authors

Milestones:

- >1983: site / water studies; R&D: large area PMT, u-water techn.; physics small setups (exotics search)
- 1991: Project NT200
- 1993: NT36 the first underwater array operates
- 1998: NT200 commissioned
- 2005: NT200+ completed

Height x Diameter = $72m \times 42m$, V_{geo} = 10^5m^3 = 0.1 Mton - 8 strings: 72m height - 192 optical modules \rightarrow 96 pairs (coincidence) - measure: Time, Charge $-\sigma_{T} \sim 1 \text{ ns}$ - Dyn. Range ~ 1000 p.e.

Effective area: 1 TeV ~2000 m² Eff. shower volume: 10TeV ~0.2Mt

Quasar PMT: d = 37cm

Ice - A perfect natural deployment platform

March, 2005, 4km off-shore: NT200+ deployment from ice.

(all connections done dry)

NT200+ Time Synchronization (new laser)

NT200+ Laser: Scattering jitter ~few nsec @ 180m

Arrival time difference Ch106 and 13:

- $DT = T_{106} T_{13}$
- L_{106} ~60m, L_{13} ~180m to Laser
- Electronics jitter 2-3ns

Arrival time distribution @ 180m

Amplitude(13) \sim 3-5 p.e.

→ Scattering contribution to jitter above 20p.e. is < 1ns
→ L_scatt is > 15m; independent measurement (prelim.)

NT200+ Laser (3)

Laser position reconstruction for ~10PeV Cascades

 \rightarrow L_scatt > 15m, independent measurement (prelim.)

NT200 - Selected Results

15

- APP (Diffuse search)

Atmospheric Muon-Neutrinos

WIMP Search

502 days livetime NT-200 (98+99) MC: Bartol-96

24 evts - experiment 36.6 evts - prediction w/o oscillations 29.7 evts - prediction w/ oscillations

Limit on excess neutrino induced upward muon flux 90% c.l. limits from the Earth (502 days NT-200 livetime, $E_{II} > 10 \text{ GeV}$)

Search for fast Monopoles ($\beta > 0.75$)

90% C.L. upper limit on the flux of fast monopole and experimental limits from [4,6,7]
$$\begin{split} N_{\gamma \text{ monop}}\left(\lambda\right) &= n^2 \left(g/e\right)^2 N_{\gamma\mu}(\lambda) = 8300 \ N_{\gamma\mu}(\lambda) \\ g &= 137/2, \ n = 1.33 \\ \text{Bright light source: } 8300 \ \text{x muon} \end{split}$$

Monopole selection criteria:

- large hit channel multiplicity: $N_{hit} > 35$ ch
- well reconstructed upward going track:

 $corTz = \Sigma(z_i \text{-} z)(t_i \text{-} t)/(\sigma_t \sigma_z) > 0.45 \ , \ \theta > 100^{\circ}$

Background : atmospheric muons (downward)

Search for Slow Massive Monopoles $(10^{-5} < \beta < 10^{-3})$

$$\sigma_{cat} = 0.17 \sigma_0 / \beta^2, \ 10^{-5} < \beta < 10^{-3}$$

M+p \longrightarrow M+e⁺ (+ π ...), N _{γ} ~10⁵

NT200 – capable to detect massive bright objects (GUT-monopoles, nuclearites, Q-balls ...): Monopole Trigger: N_{local} >4 within dt=500µsec Selection: N_{ch} >1 with N_{local} >14

Magnetic monopole visibility boundaries

Magnetic monople Flux limit

Search for High Energy Cascades

Search for High Energy Cascades

Limit on Diffuse Flux of Astrophysical v_e, v_τ, v_μ

No events observed (+ 24% system. err.) \rightarrow 2.5 evt expected \rightarrow

The 90% C.L. "all flavor" cascade limit (1038 days) for a $\gamma=2$ spectrum $\Phi_{\nu} \sim E^{-2}$ (20 TeV < E < 50 PeV), and $v_e:v_{\mu}:v_{\tau} = 1:1:1$ at Earth (1:2:0 at source) is

 $E^2 \Phi_v < 8.1 \cdot 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

The 90% C.L. Limit for W-RESONANCE production ($E = 6.3 \text{ PeV}, \sigma = 5.3 \cdot 10^{-31} \text{ cm}^2$) is

 $\Phi_{ve} < 3.3 \cdot 10^{-20} (cm^2 \cdot s \cdot sr \cdot GeV)^{-1}$

Subm. to APP; astro-ph/0508675

Diffuse Astrophysical Flux Limits + Models

Prompt atmospheric v's and muons BG source for neutrino telescopes

Limits to HE Muon Flux : Exotic Muons

Use the *high energy cascade sample* to test various HE muon and/or neutrino signal spectra.

Testing the predicted "Exotic Muon Component" (Petrukhin 1999, 2002), postulated to explain the CRknee by the onset of "new physics" at E_{thr} ~1 PeV, that pumps EAS energy to exotic muons.

The limit for E^{-2} spectrum ($\gamma=2$) shows the model rejection power !

A detailed limit calculation for exotic μ "predictions" is in progress.

27

Expectation for NT200+

Much improved reconstruction of cascade coordinates + energy

Predicted all-flavor-sensitivity for astrophysical v's : $E^2 \Phi_v < 2.7 \cdot 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ (3 yr) \rightarrow 3-4 fold improvement over NT200.

(vertex + energy reconstruction not yet used: will improve sensitivity !)

NT200+ - A step towards a Baikal-km3

NT200+ as a subunit of a km3 scale detector ?

For High Energy Cascades: A single small string replacing the NT200 central core reduces V_{eff} less than x3 for E>100TeV.

 \rightarrow A short string instead NT200 as a subunit for a Gton scale detector = ok.

A future Gigaton (km3) Detector in Lake Baikal.

Sparse instrumentation:

91 strings with 12/16 OM = 1308 OMs

→ effective volume for 100 TeV cascades ~ 0.5 -1.0 km³!

→ muon threshold between 10 and 100 TeV

Summary

- The Baikal Telescope is successfully running since 10 years

<u>NT200</u>

- Strong in HE-diffuse search (cascades): "Mton-detector"
- Good GRB-sensitivity
- Relevant other results: Magnetic Monopoles, WIMPs, atm. μ

<u>NT200+</u>

- Upgrade to NT200+ ... Tailored to diffuse cosmic nu's: >10Mton at 10PeV 3-4fold improved HE cascade sensitivity with "prototype ultra-thin array"

Future: Ideas on a Gigaton Volume Detector (km3) in Baikal

<u>Complementarity to Amanda/Ice3:</u> S-Sky, GalCenter; Scattering; Pattern_recognition, Sensitivities to diffuse flux are quite similar. A exciting time in HE-Neutrino Astrophysics. BAIKAL NT200+ will for a while be the largest Northern hemisphere HE-nu Cherenkov Telescope.

