

Recent Results from the High-Resolution Fly's Eye (HiRes) Experiment

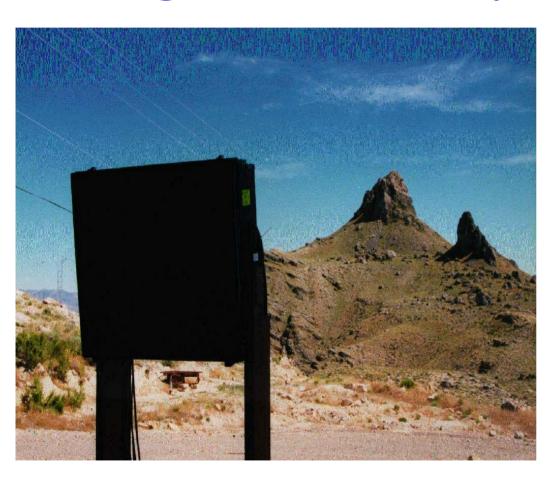
From Colliders to Cosmic Rays

Prague

Sep 11, 2005

Charles Jui

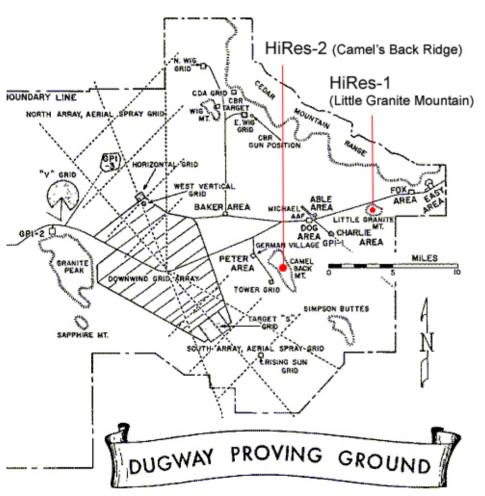
University of Utah



Outline

- Introduction of the High-Resolution Fly's Eye (HiRes) Experiment
- Composition and p-air cross-section measurements (<u>abbreviated: more details</u> from K. Belov on Mon Sep. 12 @ C2CR)
- Energy spectrum and features
- Anisotropy
- The Future: TA and TALE ... +?

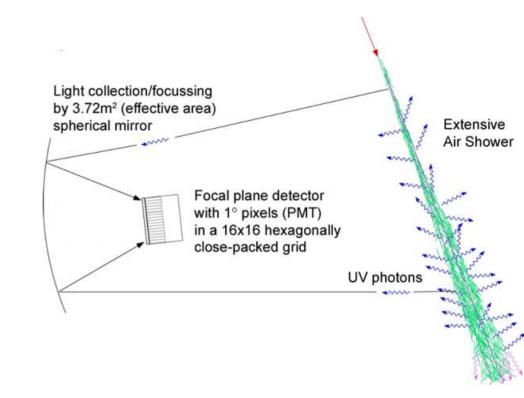
Introduction to the High Resolution Fly's Eye (HiRes)



HiRes Collaboration:

- University of Utah
- Columbia University
- Rutgers University
- University of New Mexico
- University of Montana
- University of Adelaide
- Los Alamos National Laboratory (LANL)
- University of Tokyo
- IHEP (Beijing, China)

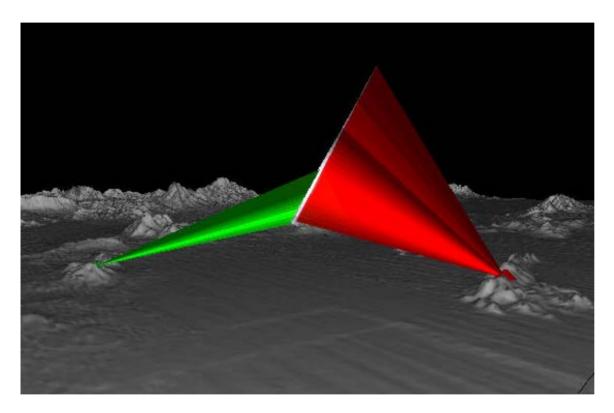
HiRes Location

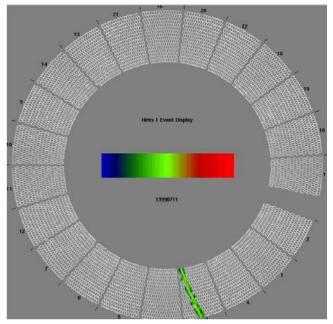


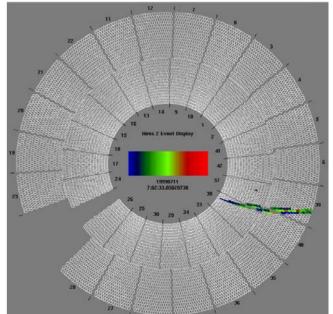
- HiRes is located on the U.S. Army Dugway Proving Ground, ~2 hours from The University of Utah campus.
- The two detector sites are located 12.6 km apart at Little Granite Mountain and Camel's Back Ridge

Detector Design

- Each HiRes detector unit ("*mirror*") consists of:
 - spherical mirror w/ 3.72m²
 unobstructed collection area
 - 16x16 array (hexagonally close-packed) of PMT pixels each viewing 1° cone of sky: giving ×5 improvement in S:N over FE (5° pixels)
 - UV-transmitting filter to reduce sky+ambient background light
 - Steel housing (2 mirrors each)
 with motorized garage doors

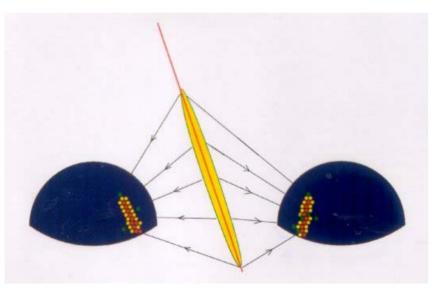


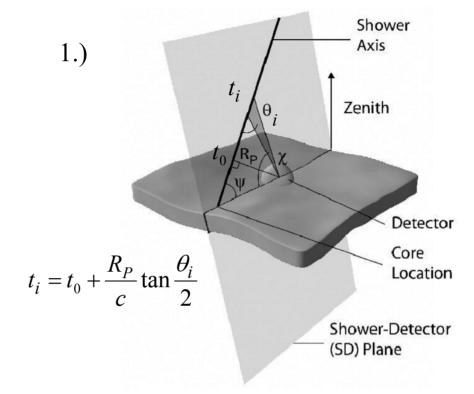


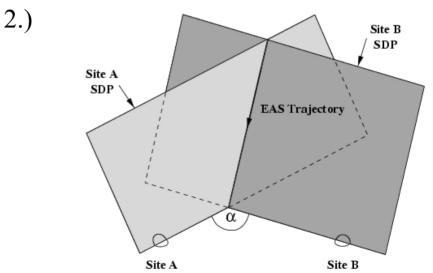


Typical HiRes Event

~2×10⁹eV event seen in 1999 (3× vertical scale)

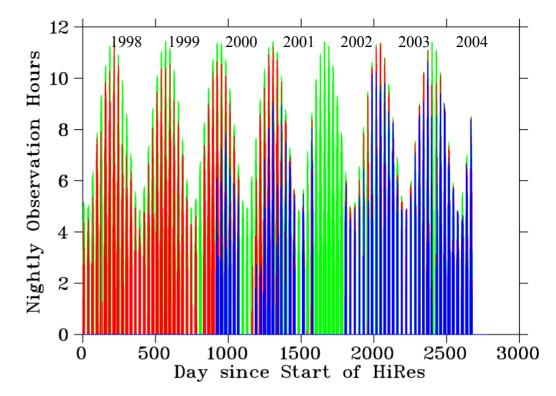






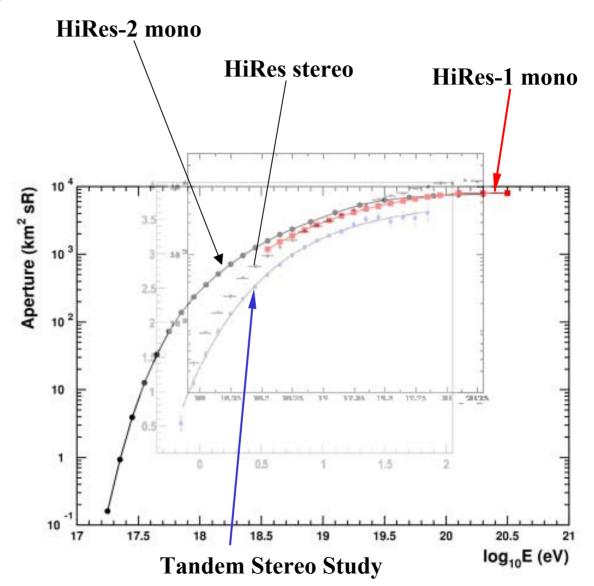
Reconstruction of EAS from HiRes Data

- The trajectory of the EAS can be determined in one of two ways:
 - 1. Monocular reconstruction using the arrival time of light signal at the detector.
 - 2. By intersecting the shower-detector planes (SDP) seen from the two detector sites.

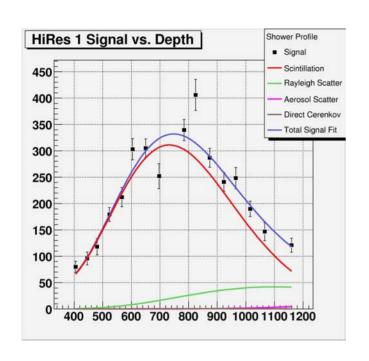


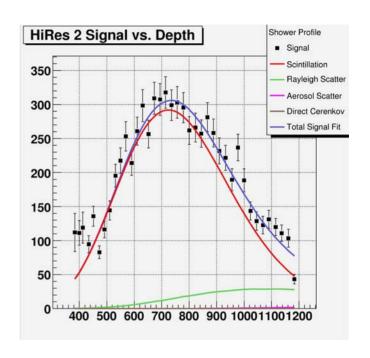
HiRes Operations

- Continuous
 operation of HiRes 1 detector since
 1997 with 4 major
 down periods (7
 months off after
 anthrax episode)
- Has been operating at 10% duty cycle since 2001-2002 shutdown



Experiment/ Data Set	Exposure(km ² sr-yr)
$AGASA (100 \text{ km}^2)$	~1000
Fly's Eye (stereo)	150
Fly's Eye (monocular)	930
Haverah Park (12 km ²)	270
Yakutsk (25 km ²)	490
Total	2,740
HiRes-1 monocular	~5,000
HiRes Stereo	~3,000


Physics with HiRes Data


- Stereo data: best resolution, optimized for E>3×10¹⁸eV
- HiRes-2
 monocular: can
 reach down to as
 low as 10^{17.2}eV
- HiRes-1
 monocular data
 began ~3 years
 earlier: largest
 statistics,

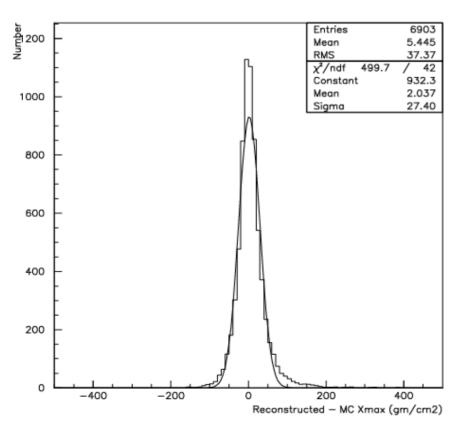
Measured shower profile.

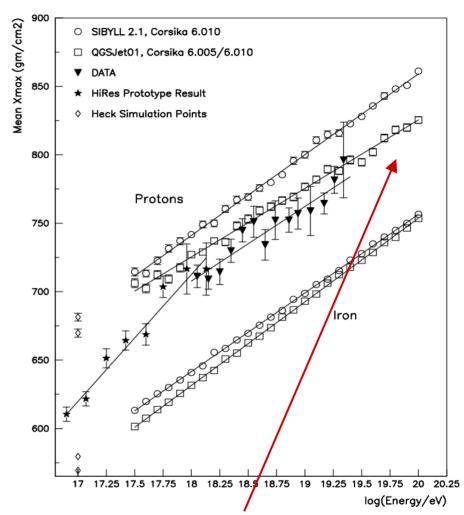
Measured shower parameters.

Event by event:

- X_{max} in g/cm²;
- Total energy of the primary particle:
- Arrival direction

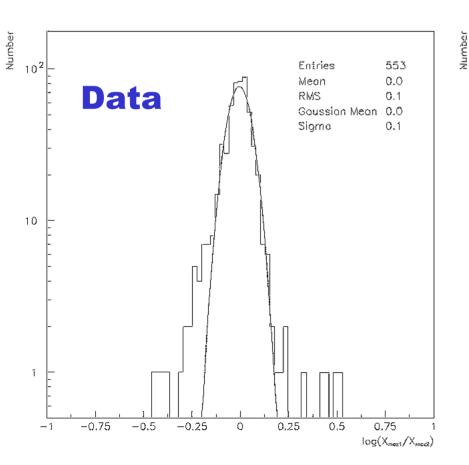
Statistically:

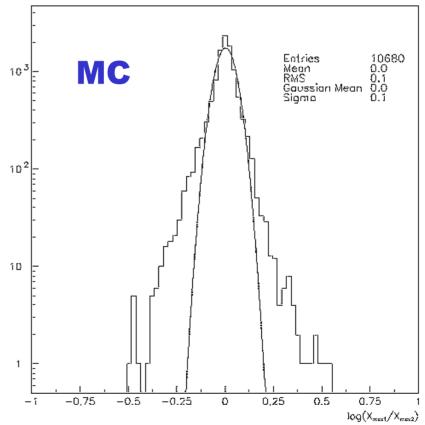

- composition.
- *p*-air inelastic cross-section;

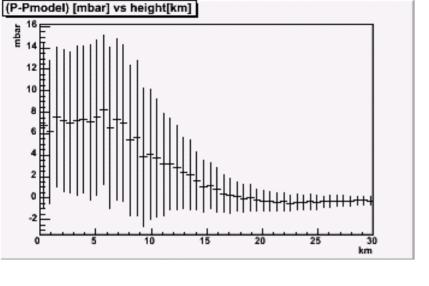

Sep 11, 2005

HiRes Composition Measurement

 Astrophysical Journal 622 (2005) 910-926

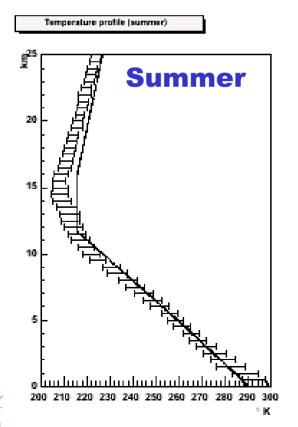


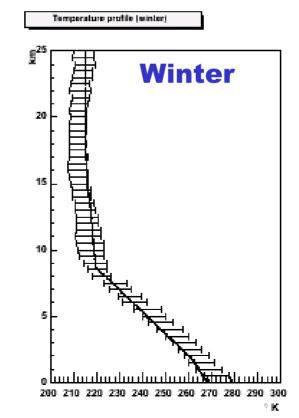

Higher statistics needed to extend analysis up to the GZK Threshold!

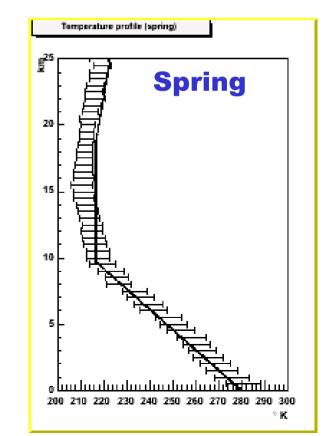


Stereo Xmax Measurement

• Two simultaneous measurements of the Xmax allows for *direct verification* of the MC resolution

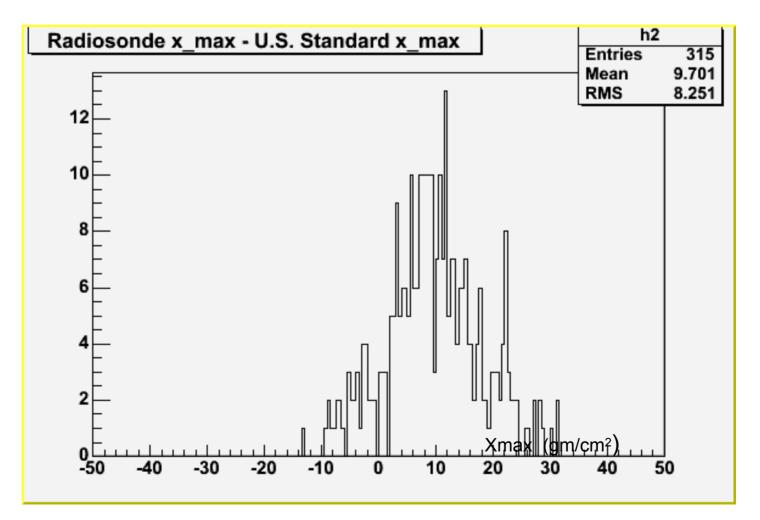




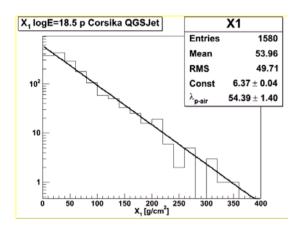


Updated Atmospherics

- The atmosphere over Utah appears stable and in good agreement with seasonal "Standard atmosphere" Models
- Residuals between measurements and model are typically less than ~10 mBar in the troposphere.

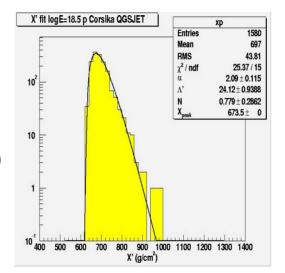


How much does the reconstructed shower X_{max} shift using Radiosonde data (SLC) vs. using the US standard atmosphere model?


Systematic Uncertainty in Xmax

- Effect of pointing accuracy 15 gm/cm²
- Effect of atmospheric variation 10 gm/cm²
- Effect of using Std Atmosphere –10 gm/cm²
- Reconstruction bias 5 gm/cm²
- Sum in quadrature 21.2 gm/cm²
- 3-season model shifts published Xmax vs E results 10 gm/cm² larger/deeper
- Will use 3-season-model in future work with composition:

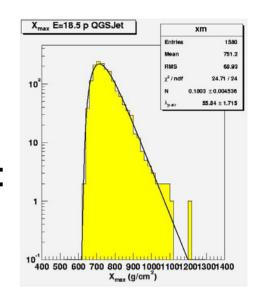
Measuring Cross-Section: De-convolution Method.


Point of first interaction distribution. Exponential index reflects inelastic Cross-section

$$f_{\text{int}} = e^{-\frac{x_1}{\lambda_{p-Air}}};$$

$$\lambda_{p-Air} = \frac{1}{\widetilde{n} \, \sigma_{p-air}^{inel}};$$

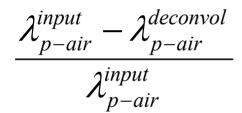
Atmospheric part of air shower fluctuations

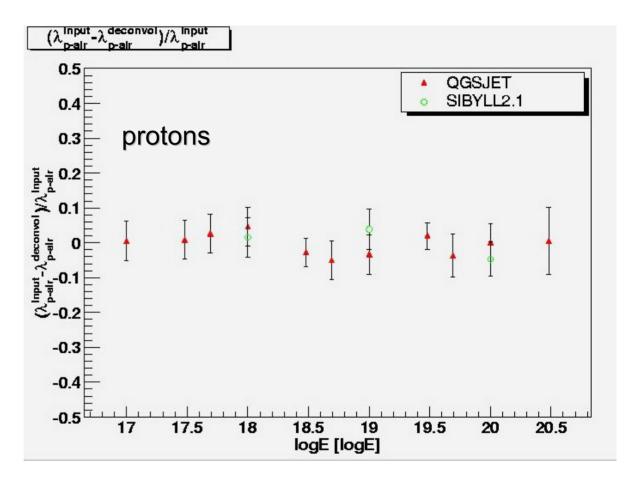


$$X' = X_{\text{max}} - X_{1}$$

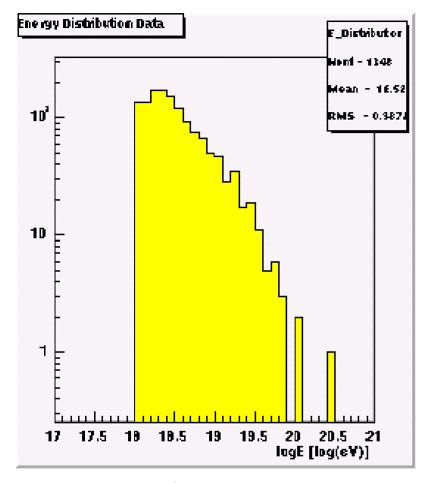
$$f_{fluct} = \left[\frac{x_{\text{max}} - x_{peak} - x_{1} + \Lambda' \alpha}{e}\right]^{\alpha} e^{-\frac{x_{\text{max}} - x_{1} - x_{peak}}{\Lambda'}}$$

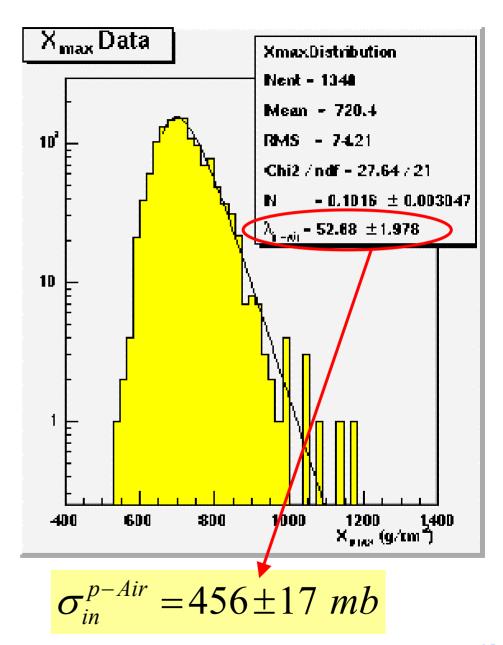
$$f_{fluct}(x_{peak}(E), \Lambda'(E), \alpha(E)) \Rightarrow f_{fluct}(E)$$



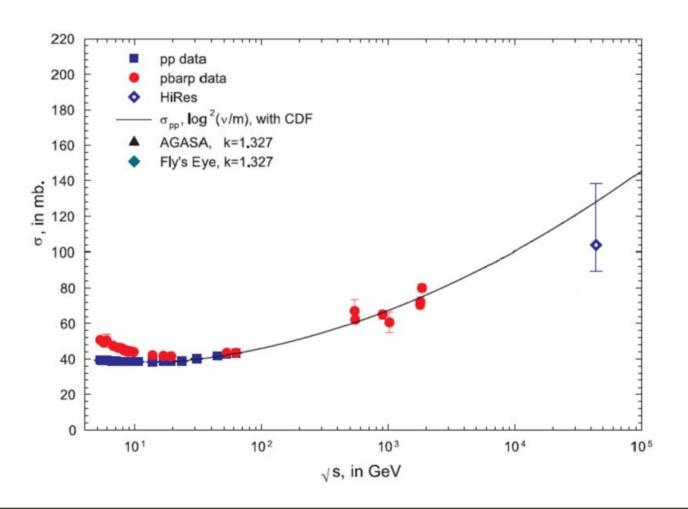

$$P_{m}(x_{m}) = N \int_{0}^{x_{m}-x_{peak}+\Lambda'\alpha} e^{\frac{-x_{1}}{\lambda_{p-Air}}} \left[\frac{x_{\max}-x_{peak}-x_{1}+\Lambda'\alpha}{e} \right]^{\alpha} e^{-\frac{x_{\max}-x_{1}-x_{peak}}{\Lambda'}} dx_{1};$$

Test of De-convolution Method


Correct within fitting errors


Deconvolution is identical for QGSJet and SIBYLL. (events through detector simulation)

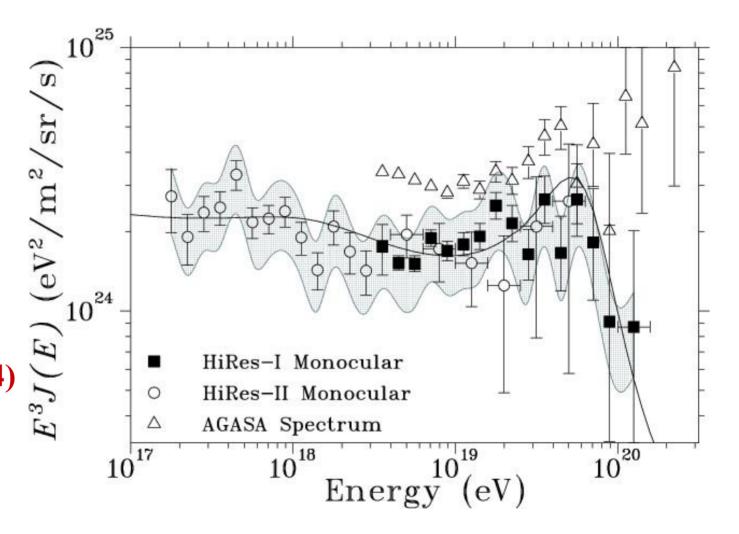
Data and Deconvolution Result



• 1348 out of 3346 stereo events pass the quality cuts (data:12/1999-3/2003)

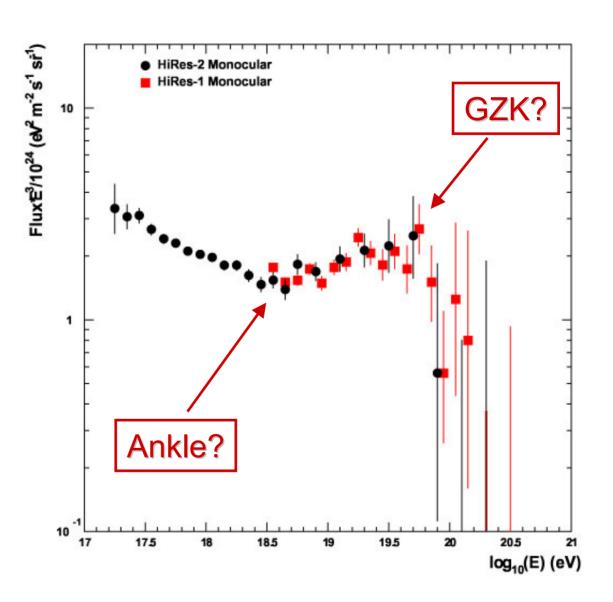
HiRes Measurement

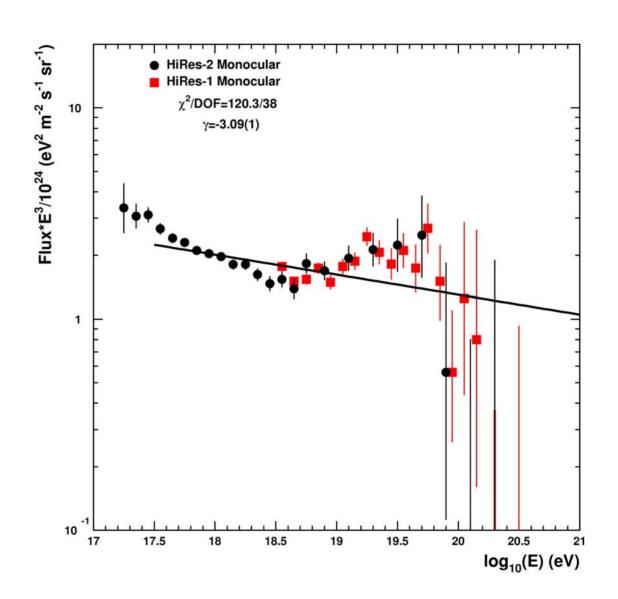
• HiRes: $\sigma_{in}^{p-Air} = 456 \pm 17(stat) + 39(sys) - 11(sys) \ mb \ at \ 10^{18.5} eV$


Sep 11, 2005

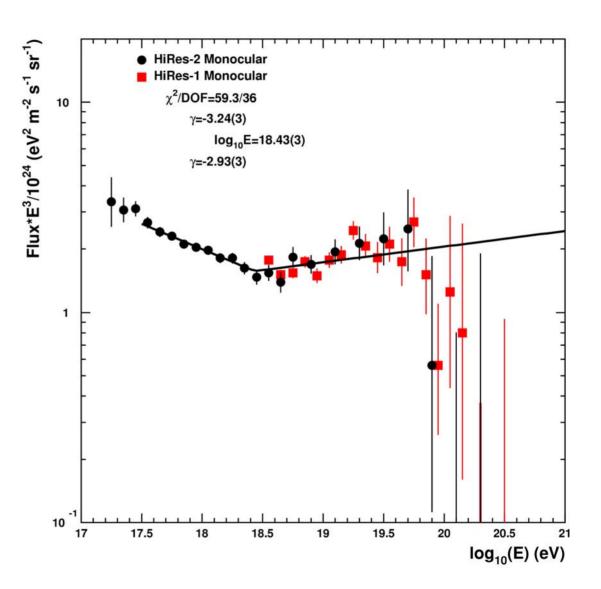
Measurement of UHECR Energy Spectrum

• Combined
HiRes-1 and
HiRes-2
monocular
spectra
published:

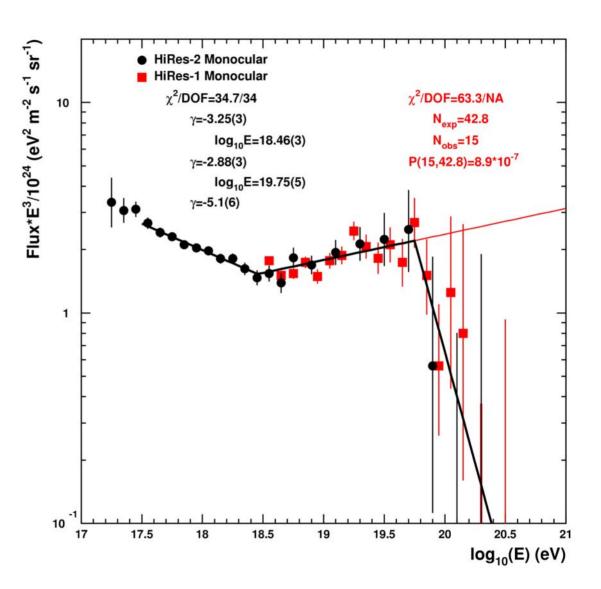

Phys. Rev. Lett. 92, 151101 (2004)


Updated monocular spectrum:

Are spectral features seen?



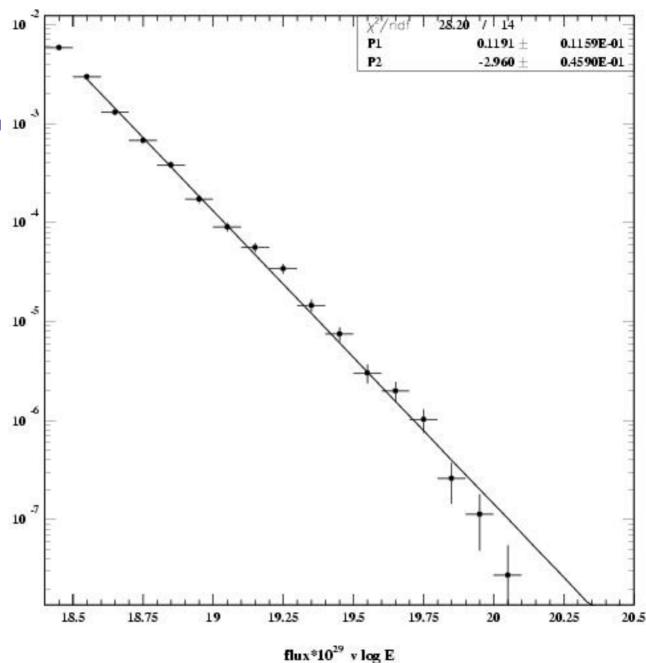
1. Single power law fit:



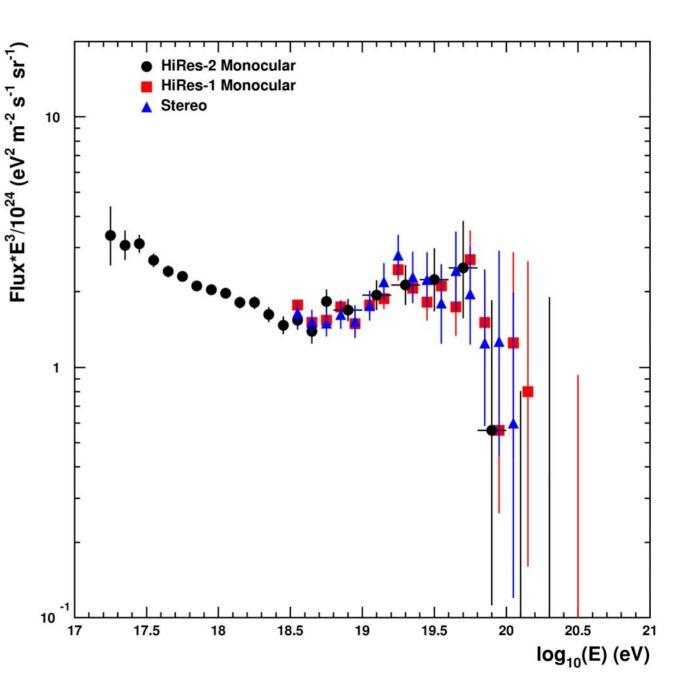
2. Improved fit using two-power laws with a single floating break


3. Still better fit using three power laws with two floating breaks

- Significance of the deficit at high energy end relative to continuation of power law?
- Extrapolate middle section:
 - Expect 42.8 events
 - Observe 15
 - Poisson $p = \sim 10^{-6}$


 4σ is 3 x 10^{-5} 5σ is 3 x 10^{-7}

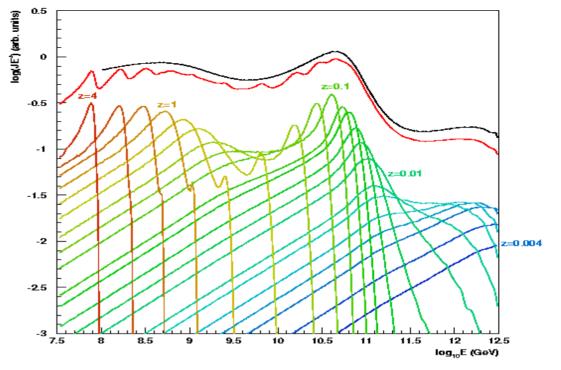
Preliminary Stereo 103 Spectrum

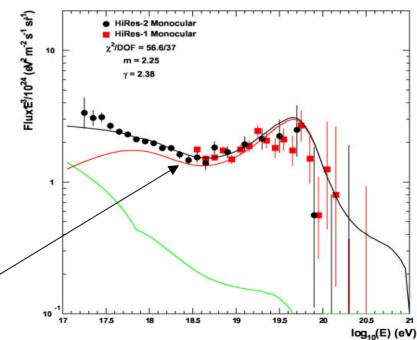

- Fit to power law.
- Single index gives poor χ^2
- Evidence for changing index near ~10^{19.8} eV

HiRes Monocular & Prelim Stereo Spectra Spectra

(Stereo Normalized to Monocular)

Stereo GZK sensitivity


- Assume 3900 hours
- Assume Stereo Aperture
- Consider 2 possible spectral models
 - Fly's Eye with no GZK cutoff: expect ~34 events
 - Fly's Eye with GZK cutoff: expect ~9 events


Interpretation of the UHE Spectrum

- Interaction with the CMBR fractionates the extragalactic flux of protons by red-shift/age
- Observed structures can be attributed to this process
- Pile-up from pionproduction causes the bump at 10^{19.5} eV.
- e⁺e⁻ pair production excavates the ankle.

see Phys. Letters B, in press (2005)

(arXiv:astro-ph/0501317) update shown

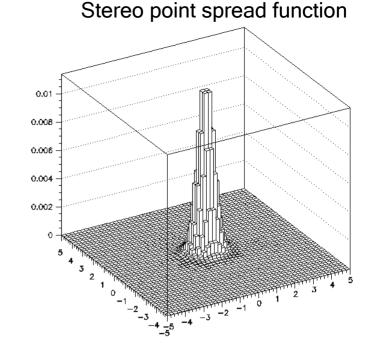
Summary of Spectrum Results

Monocular Spectrum

- Using the latest monocular data, HiRes has observed the GZK suppression
- Ankle at $\sim 10^{18.6} eV$

Stereo Spectrum

- Shape consistent with monocular spectrum at 2.5x AGASA statistics
- GZK suppression seen in stereo
- Studies to understand absolute normalization in progress



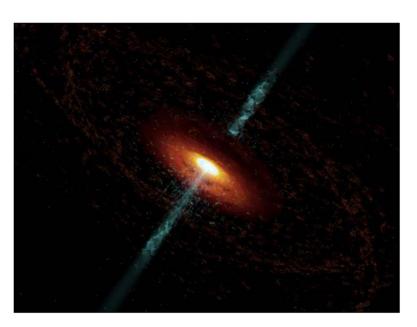
HiRes Anistropy Results

Monocular Anisotrpy Results

- Autocorrelation functions (histogram of cos θ between all possible pairs) for HiRes-1 monocular (left) and AGASA (right) events above ~4x10¹⁹eV
 Astropart. Phys. 22, 139 (2004)
- Search for dipole enhancement in the direction of nearby a-priori sources: null results for the Galactic Center, Centaurs A, and M87
 Astropart. Phys. 21, 111 (2004)
- Point source search: null result **Submitted to Astropart Phys.**
- Search for cross-correlation with AGASA doublets and triplet:
 - Observed overlap no greater than that expected by chance from an isotropic

Submitted to Astropart Phys.

Stereo Anisotrpy Results


- Stereo angular resolution $\sim 0.6^{\circ}$
- HiRes stereo data ($E > 10^{19}$ eV) is consistent with isotropy at all small angular scales

Astrophys. J. Lett. 610 (2004) L73

 Search for Point Sources of Ultra-High Energy Cosmic Rays above 4.0 10¹⁹ eV Using a Maximum Likelihood Ratio Test Astrophys. Journal 623 (2005) 164

Hilles Corrlation with BL Lacertae Objects

- BL Lacertae Object special type of blazar, active galaxy with jet axis aligned with our line of sight.
- Blazars are established sources of TeV g-rays
- Candidates for accelerating cosmic rays to EeV energies

Somewhat controversial recent history regarding correlations of UHECR with BL Lac objects:

Tinyakov and Tkachev, JETP 74 (2001) 445.

Tinyakov and Tkachev, Astropart. Phys. 18 (2002) 165.

Gorbunov et al., ApJ 577 (2002) L93.

Evans, Ferrer, and Sarkar, Phys.Rev. D67 (2003) 103005.

Torres et al., Astrophys.J. 595 (2003) L13.

Gorbunov et al., JETP Lett. 80 (2004) 145.

C2CR, PragiStern and Poutanen, ApJ 623 (2005) L33.

Sep 11, 2005

BL Lac Correlation: Previous Claims

Magnitude	Redshift	6cm Radio Flux	# Obj.	CR Sample	# CRs	Bin Size	# Pairs	Prob.
Catalog: Veron (9 th Ed.) BL Lacs		22	AGASA >48 EeV Yakutsk >24 EeV	65	2.5°	8	< 10 ⁻⁴	
m < 18	z > 0.1 or unknown	S _{6cm} > 0.17 Jy	22	HiRes > 24 EeV	66	2.5°	0	1.00
_	g: Veron (10 th l ated with EGR	,	14	AGASA >48 EeV Yakutsk >24 EeV	65	2.9°	8	10 ⁻⁴
no cut	no cut	no cut	14	HiRes > 24 EeV	66	2.9°	1	.70
Catalog	g: Veron (10 th I	Ed.) BL Lacs	156	AGASA > 40 EeV	57	2.5°	12	.02
m < 18	no cut	no cut	156	HiRes > 40 EeV	27	2.5°	2	.78
Catalog	g: Veron (10 th I	Ed.) BL Lacs	156	HiRes > 10 EeV	271	0.8°	10	10 ⁻³
m < 18	no cut	no cut	100					

Tinyakov & Tkachev, JETP 74 (2001) 445.

Tinyakov and Tkachev, Astropart. Phys. 18 (2002) 165.

C2CR, Prague Gorbunov et al., ApJ 577 (2002) L93.

33

BL Lac Correlation: New Claim

Most recent claim by Gorbunov is based on published HiRes data. It uses a 10 EeV threshold, so it is a new claim.

Magnitude	Redshift	6cm Radio Flux	# Obj.	CR Sample	# CRs	Bin Size	# Pairs	Prob.
Catalo	Catalog: Veron (9 th Ed.) BL Lacs		AGASA >48 EeV Yakutsk >24 EeV	65	2.5°	8	< 10 ⁻⁴	
m < 18	z > 0.1 or unknown	S _{6cm} > 0.17 Jy	22	HiRes > 24 EeV	66	2.5°	0	1.00
,	g: Veron (10 th lated with EGR	*	14	AGASA >48 EeV Yakutsk >24 EeV	65	2.9°	8	10 ⁻⁴
no cut	no cut	no cut	14	HiRes > 24 EeV	66	2.9°	1	.70
Catalog	g: Veron (10 th l	Ed.) BL Lacs	156	AGASA > 40 EeV	57	2.5°	12	.02
m < 18	no cut	no cut	156	HiRes > 40 EeV	27	2.5°	2	.78
Catalog	g: Veron (10 th l	Ed.) BL Lacs	450	HiRes > 10 EeV	271	0.8°	10	10 ⁻³
m < 18	no cut	no cut	156					

BL Lac Correlation: New Claim

The 0.8° angular bin size was optimized by Gorbunov et al.

It is preferable to perform an *unbinned* maximum likelihood analysis, using the individual errors of each event.

We performed an analysis similar to that used in the point source search (described in usa-westerhoff-S-abs1-he14-oral), modified for a multiple-source hypothesis. We find:

Estimated number of source events:

 $n_{s} = 8.0$

(~ excess of events correlating with BL Lacs)

Fraction F of isotropic MC sets with stronger signal: $F = 2 \times 10^{-4}$

Magnitude	Redshift	6cm Radio Flux	# Obj.	CR Sample	# CRs	Bin Size	# Pairs	Prob.
Catalog: Veron (10 th Ed.) BL Lacs		450	HiRes > 10 EeV	271	0.8°	10	10 ⁻³	
m<18	no cut	no cut	156	Need to test with new data				

BL Lac Correlation: New Claim

- Charged primaries with energies $\sim 10^{19}$ eV are expected to be deflected many degrees by the galactic magnetic field.
- Correlations on the scale of the HiRes angular resolution (0.6°) imply that primary must be neutral (at least over most of its path). But neutrons and photons have a very short mean path (~ few Mpc) at this energy...
- Arrival directions have not been examined for the data taken since 2004 January.
- Use current sample to decide *a priori* what will be tested with new data.

BL Lac Correlation: Energy Dependence

• Modify Energy Threshold:

10¹⁹ eV threshold is due to the fact that HiRes originally published only the arrival directions of events above this energy.

If we perform the analysis on all the events below 10^{19} eV, there is a weaker correlation: $n_s = 22$ with ln R = 3.10.

The fraction of isotropic MC sets with stronger signal is $F = 6 \times 10^{-3}$.

For the combined HiRes data set (all energies), the result is:

$$n_s = 31$$
 , $F = 2 \times 10^{-4}$

BL Lac Correlation: Source Sample

- Confirmed BL Lacs in the Veron Catalog are classified as "BL" or "HP" (latter for relatively high degree of polarization).
- So far, only "BL" have been considered.
- If we perform the analysis on the 47 "HP" BL Lacs (using the same m<18 cut as was used for "BL") and HiRes events above 10^{19} eV, we find: $n_s = 3.0$, with $F = 6 \times 10^{-3}$.
- For the complete set of confirmed BL Lacs (i.e. "BL" + "HP") with m<18, and HiRes events above 10^{19} eV, we find: $n_s = 10.5$, with $F = 10^{-5}$.
- The m<18 was originally tuned to optimize correlations with AGASA data. We have performed all of the same tests using BL Lacs with m>18, and no correlation is found.

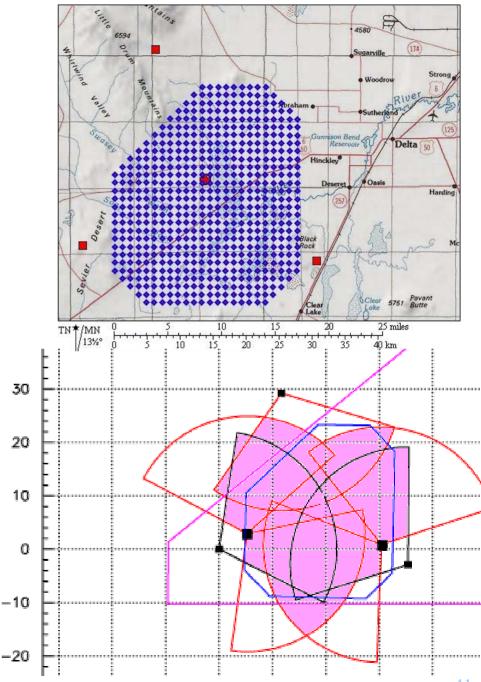
TeV BL Lac Correlation

- Six BL Lacs are confirmed sources of TeV g-rays. Five are in the northern hemisphere and well observed by HiRes.
- We perform the maximum likelihood analysis on each source individually using all HiRes events:

Name	Z	V Mag	n _s	F
Mrk 421	0.03	12.9	0.3	0.2
H1426+428	0.13	16.5	0	0.4
Mrk 501	0.03	13.8	3.3	6×10 ⁻⁴
1ES1959+650	0.05	12.8	2.0	8×10 ⁻³
1ES2344+514	0.04	15.5	0	0.7

• For the TeV blazars taken as a set, the ML analysis yields:

All energies: ns = 5.6 with F = 10-3


Summary of BL Lac Correlation:

- "BL", m<18, all HiRes events (no E cut): $F = 2 \times 10^{-4}$
- "BL+HP" with m<18, HiRes E>10 EeV: $F = 10^{-5}$
- Confirmed TeV blazars, all HiRes events (no E cut): $F = 10^{-3}$
- These are not independent results: the samples overlap.
- Analysis has been *a posteriori*, so above *F* values are not true chance probabilities.
- Correlations must be tested with independent data before any claim can be made.
- Arrival directions of past year of data have not been analyzed. Data taking through March 2006 will yield an independent data set ~70% of the current sample size: Independent test of BL Lac correlations should be possible

Future Prospects

- HiRes will cease operation at the end of March 2006
- Analysis of major topics to be completed by summer of 2007 (30th ICRC)
- Subgroups of HiRes have joined the Telescope Array (Delta, UT, USA)
 - Grond array of 576 (1.2km spacing) scintillation counters
 - Three fluorescence sites looking inward
- US contribution: low-energy extension down to 10^{16.5} eV
- TALE will also make TA into a fully stereo-hybrid detector

