The Shower Event Rates of Ultrahigh Energy Tau Neutrinos in the Rock Salt

G.-L. Lin
National Chiao-Tung University
Taiwan

Work done with Y.-L. Hong, A. Huang and C.-H. Iong
Outline

- Introduction
- The procedures for event rate simulations
- Tau neutrino event rates in the rock salt—due to standard model particle physics and TeV scale gravity respectively
- Concluding remarks
Introduction

• Why are we interested in detecting high energy astrophysical neutrinos?
 (a) The neutrino is weak interacting. Its arrival direction points back to the powerful source in the universe.
 (b) The detection might help to unveil the mystery of cosmic ray flux beyond GZK cutoff.
Discrepancy yet to be resolved!

\[P + \gamma_{\text{CMB}} \rightarrow \Delta \rightarrow N\pi, \pi \text{ decays produce neutrino!} \]
R. Engel, D. Seckel and T. Stanev, 01

$\nu_e : \nu_\mu : \nu_\tau = 1:1:1$ due to oscillations!
• Why are we interested in tau neutrinos? There are not direct detections of astrophysical tau neutrinos so far.

• What are the current suggestions for astrophysical tau neutrino fluxes?
Tau neutrino fluxes

AGN ν_τ inferred from Kalashev, Kuzmin, Semikoz, and Sigl, 02
GZK ν_τ inferred from R. Engel, D. Seckel and T. Stanev, 01

H. Athar, J.-J. Tseng and G.-L. Lin, ICRC 03
Various strategies to detect high energy tau neutrinos or other types of neutrinos:

(a) with large underground water Cherenkov detectors—AMANDA, BAIKAL, IceCube, NEMO...

(b) with air-shower detectors (Fluorescence or Cherenkov)—Auger, Ashra-NuTel...

(c) with radio wave detectors—ANITA, SalSA

I will mainly focus on (c)
Radio array in salt dome

- Radio signal from the showers
 - Cherenkov angle is large $\sim 66^\circ$!
- Underground salt dome.
 - Higher density than water/ice
 - Good transparency to radio signal

Figure comes from Peter Gorham, talk in SLAC SalSA workshop, Feb 2005.
The signature of high energy ν_τ

1st shower: neutrino-nucleon scattering, this shower carries 0.25 of neutrino energy.

2nd shower: τ decays into hadrons, this shower carries $0.75 \times 0.6 = 0.45$ of neutrino energy

2 showers separated by roughly $50 \times (E_\tau/10^6 \text{ GeV})$ m

Monte-Carlo simulation of neutrino interaction inside the Earth

Direction, position

New event

Propagation thru. Earth

CC/NC

leptons

hadrons

CTEQ6

M. A. Huang, C.-H. Iong and G.-L. Lin, ICRC 05
The tau lepton loses its energy in the medium through 4 kinds of interactions:

(1). Ionization (α): the tau lepton excites the atomic electrons. H. A. Bethe 1934

(2). Bremsstrahlung (β):

A. A. Petrukhin & V.V. Shestakov, 1968

(3). Pair Production (β):

R. P. Kokoulin & A. A. Petrukhin, 1971
(4). Photo-nuclear interaction:

$$F_2(x, Q^2)$$

Basic component

The nucleus shadowing effect is considered:

$$a(A, x, Q^2) = \frac{F_2^A(x, Q^2)}{AF_2^N(x, Q^2)}$$

Tau lepton energy loss is treated as stochastic, as opposed to
\[-\frac{dE}{dX} = \alpha + \beta E.\]
MR

- MR: Medium Region
 - Sphere of 5 km radius, under 1km of rock.
The Detector (inside MR)

- The detector array: 12 x 12 strings on each surface, 12 nodes per string (8 shown), 225 m spacing.
 - Total volume $(2.475\text{km})^3 = 15.16 \text{ km}^3 = 32.83 \text{ km}^3$ of w.e.
 - Figure and specification come from Peter Gorham, talk in SLAC SalSA workshop, Feb. 2005.
Toy model for detector simulation

- Shower energy distributed over Cherenkov cone and suffers from attenuation.
 - Assume $\lambda = 300$ m, 600 m, and 900 m respectively
 - λ is between 250 m and 900 m.
 Gorham et al., 04

- Antenna trigger
 - $dE_{\text{hit}}/da > dE_{\text{min}}/da$

- Array trigger
 - 6 antennas triggered.

\[\frac{dE_{\text{hit}}}{da} = \frac{E_{\text{sh}}}{2\pi r^2 \sin \alpha \Delta \alpha} e^{-r/\lambda} \]

\[\frac{dE_{\text{min}}}{da} = \frac{E_{\text{th}}}{2\pi \lambda^2 \sin \alpha \Delta \alpha} e^{-1} \]

\[\alpha = 66^\circ, \, d\alpha = 5^\circ \]
Results -1

- \(\cos \theta \) vs. shower energy: all events
Results – BH-1

- $\cos\theta$ vs. shower energy: all events
$\nu+N \rightarrow \text{micro black holes} \rightarrow \tau$

$\sim 4 \text{ particles at } 10^8 \text{ GeV}$

$\sim 6 \text{ particles at } 10^9 \text{ GeV}$

Take $n=6, M_D=2 \text{ TeV}$ for simulations
Results -2

- \(\cos \theta \) vs. shower energy: \(E_{\text{th}} = 10^6 \text{ GeV} \), \(\lambda = 900 \text{ m} \)
Results – BH-2

- $\cos\theta$ vs. shower energy: $E_{\text{th}}=10^6$ GeV, $\lambda=900$ m
Results -3

- $\cos\theta$ vs. shower energy: $E_{th}=10^6$ GeV, $\lambda=300$ m
Results –BH-3

- $\cos \theta$ vs. shower energy: $E_{th} = 10^6$ GeV, $\lambda = 300$ m
• Event numbers differ significantly between $\lambda=300$ m and $\lambda=900$ m.
• Vertical axis is in relative scale
- Event numbers/yr at \(E_{th} = 10^6 \) GeV

\[
\frac{5}{(2 + 3)} = \frac{\sigma_{NC}}{\sigma_{CC}}
\]

<table>
<thead>
<tr>
<th>Type</th>
<th>CC</th>
<th>(\tau) decay</th>
<th>All events</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>300 m</td>
<td>600 m</td>
</tr>
<tr>
<td>1</td>
<td>out</td>
<td>in</td>
<td>25.8±0.5</td>
<td>0.59±0.08</td>
</tr>
<tr>
<td>2</td>
<td>in</td>
<td>in</td>
<td>13.2±0.4</td>
<td>1.2±0.1</td>
</tr>
<tr>
<td>3</td>
<td>in</td>
<td>out</td>
<td>30.1±0.6</td>
<td>2.0±0.1</td>
</tr>
<tr>
<td>4</td>
<td>out</td>
<td>out</td>
<td>23.9±0.5</td>
<td>0.38±0.06</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>x</td>
<td>17.9±0.4</td>
<td>0.96±0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>110.9±1.1</td>
</tr>
</tbody>
</table>
- Event numbers/yr, $\lambda=600$ m

<table>
<thead>
<tr>
<th>Type</th>
<th>CC</th>
<th>τ decay</th>
<th>All events</th>
<th>E_{th}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^6 GeV</td>
<td>3×10^6 GeV</td>
</tr>
<tr>
<td>1</td>
<td>out</td>
<td>in</td>
<td>25.8±0.5</td>
<td>2.4±0.2</td>
</tr>
<tr>
<td>2</td>
<td>in</td>
<td>in</td>
<td>13.2±0.4</td>
<td>3.6±0.2</td>
</tr>
<tr>
<td>3</td>
<td>in</td>
<td>out</td>
<td>30.1±0.6</td>
<td>5.6±0.2</td>
</tr>
<tr>
<td>4</td>
<td>out</td>
<td>out</td>
<td>23.9±0.5</td>
<td>1.7±0.1</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>x</td>
<td>17.9±0.4</td>
<td>3.1±0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>110.9±1.1</td>
</tr>
</tbody>
</table>
Double Bang events

- Type 2 event are fully contained inside MR, but not both of the two showers could trigger the detector

$\sim 0.1/\text{yr}$ for $\lambda = 300$ m, $E_{\text{th}} = 10^6$ GeV
Concluding Remarks

• I have presented the motivations for high energy tau neutrino astronomy.

• The tau neutrino shower event rates and their angular distributions in the rock salt are presented. The event rates vary by about one order of magnitude from $\lambda=300$ m to $\lambda=900$ m.

• The ν_τ and τ propagations inside the Earth are simulated in a full detail, while a toy model for the detector is used to obtain the event rates. However, one gets an idea on the geometric capacity of the SalSA detector.