C2CR, Sep11, 2005

The Shower Event Rates of Ultrahigh Energy Tau Neutrinos in the Rock Salt

G.-L. Lin National Chiao-Tung University

Taiwan

Work done with Y.-L. Hong, A. Huang and C.-H. Iong

Outline

- Introduction
- The procedures for event rate simulations
- Tau neutrino event rates in the rock salt due to standard model particle physics and TeV scale gravity respectively
- Concluding remarks

Introduction

- •Why are we interested in detecting high energy astrophysical neutrinos?
 - (a) The neutrino is weak interacting. Its arrival direction points back to the powerful source in the universe.
 - (b) The detection might help to unveil the mystery of cosmic ray flux beyond GZK cutoff.

Discrepancy yet to be resolved!

 $P + \gamma_{\text{CMB}} \rightarrow \Delta \rightarrow N\pi$, π decays produce neutrino!

R. Engel, D. Seckel and T. Stanev, 01

 $v_e:v_\mu:v_\tau=1:1:1$ due to oscillations!

•Why are we interested in tau neutrinos? There are not direct detections of astrophysical tau neutrinos so far.

•What are the current suggestions for astrophysical tau neutrino fluxes?

Tau neutrino fluxes

AGN v_{τ} inferred from Kalashev, Kuzmin, Semikoz, and Sigl, 02 GZK v_{τ} inferred from R. Engel, D. Seckel and T. Stanev, 01

H. Athar, J.-J. Tseng and G.-L. Lin, ICRC 03

 Various strategies to detect high energy tau neutrinos or other types of neutrinos:

 (a) with large underground water Cherenkov detectors---AMANDA, BAIKAL,IceCube, NEMO...

(b) with air-shower detectors (Fluorescence or Cherenkov)---Auger, Ashra-NuTel...
(c) with radio wave detectors---ANITA, <u>SalSA</u>

I will mainly focus on (c)

Radio array in salt dome

- Radio signal from the showers
 - Cherenkov angle is large ~66°!
- Underground salt dome.
 - Higher density than water/ice
 - Good transparency to radio signal

Figure comes from Peter Gorham, talk in SLAC SalSA workshop, Feb 2005.

The signature of high energy v_{τ}

<u>1st shower</u>: neutrino-nucleon scattering, this shower carries 0.25 of neutrino energy.

<u>2nd shower</u>: τ decays into hadrons, this shower carries **0.75*0.6=0.45** of neutrino energy

2 showers separated by roughly $50 \times (E_{\tau}/10^6 \text{ GeV}) \text{ m}$

Learned & Pakvasa, 1995; Athar, Parente, and Zas, 2000.

Monte-Carlo simulation of neutrino interaction inside the Earth

M. A. Huang, C.-H. Iong and G.-L. Lin, ICRC 05

The tau lepton loses its energy in the medium through 4 kinds of interactions:

(1). Ionization (α): the tau lepton excites the atomic electrons. H. A. Bethe 1934
(2) Description (α): (0)

(2). Bremsstrahlung (β):

Basic component

The nucleus shadowing effect is considered:

$$a(A, x, Q^{2}) = \frac{F_{2}^{A}(x, Q^{2})}{AF_{2}^{N}(x, Q^{2})}$$

Brodsky & Lu, 1990; Mueller & Qiu 1986; E665 Collab. Adams et al., 1992

Tau lepton ranges

Tau lepton energy loss is treated as stochastic, as opposed to $-dE/dX = \alpha + \beta E$.

MR

Earth density/composition profile

Beetty, J. K. and A. Chaikin, The New Solar System, 1990.

- The detector array: 12 x 12 strings on each surface, 12 nodes per string (8 shown), 225 m spacing.
 - Total volume $(2.475 \text{km})^3 = 15.16 \text{ km}^3 = 32.83 \text{ km}^3$ of w.e.
 - Figure and specification come from Peter Gorham, talk in SLAC SalSA workshop, Feb. 2005.

Toy model for detector simulation

- Shower energy distributed over $\frac{dE_{i}}{dc}$ Cherenkov cone and suffers from dcattenuation.
 - Assume λ =300 m, 600 m, and 900 m respectively
 - λ is between 250 m and 900 m. Gorham et al., 04
- Antenna trigger
 - $\ dE_{hit}/da > dE_{min}/da$
- Array trigger
 - 6 antennas triggered.

$$\alpha = 66^{\circ}, d\alpha = 5^{\circ}$$

$$\frac{dE_{hit}}{da} = \frac{E_{sh}}{2\pi r^2 \sin \alpha \Delta \alpha} e^{-r/\lambda}$$

Results -1

• $\cos\theta$ vs. shower energy: all events

Results –BH-1

• $\cos\theta$ vs. shower energy: all events

J. L. Feng and A. D. Shapere 02 4+n dimensions of space-time
J. Alvarez-Muniz et al. 02
L. A. Anchordoqui et al. 03

 $\nu + N \rightarrow$ micro black holes $\rightarrow \tau$

~4 particles at 10⁸ GeV ~6 particles at 10⁹ GeV

Take n=6, M_D =2 TeV for simulations

Results -2

• $\cos\theta$ vs. shower energy: $E_{th}=10^{6}$ GeV, $\lambda=900$ m

Results –BH-2

• $\cos\theta$ vs. shower energy: $E_{th}=10^{6}$ GeV, $\lambda=900$ m

Results -3

• $\cos\theta$ vs. shower energy: $E_{th}=10^6$ GeV, $\lambda=300$ m

Results –BH-3

• $\cos\theta$ vs. shower energy: $E_{th}=10^6$ GeV, $\lambda=300$ m

- Event numbers differ significantly between λ =300 m and λ =900 m.
- Vertical axis is in relative scale

• Event numbers/yr at $E_{th} = 10^6 \text{ GeV}$

5/(2 \oplus 3)= σ_{NC}/σ_{CC}

Туре	CC	τ deca y	All events	λ		
				300 m	600 m	900 m
1	out	in	25.8± 0.5	0.59±0 .08	2.4±0. 2	7.9±0. 3
2	in	in	13.2± 0.4	1.2±0. 1	3.6±0. 2	5.2±0. 2
3	in	out	30.1± 0.6	2.0±0. 1	5.6±0. 2	8.9±0. 3
4	out	out	23.9± 0.5	0.38±0 .06	1.7±0. 1	10.0±0 .3
5	NC	X	17.9± 0.4	0.96±0 .10	3.1±0. 2	5.3±0. 2
Total			110.9 ±1.1	5.1±0. 2	16.3±0 .4	37.3±0 .6

 Event numbers/yr, λ=600 m

Туре	CC	τ deca y	All events	E_{th}		
				10 ⁶ GeV	3×10 ⁶ GeV	10 ⁷ GeV
1	out	in	25.8±0 .5	2.4±0.2	1.3±0.1	0.8±0.1
2	in	in	13.2±0 .4	3.6±0.2	2.7±0.2	1.9±0.1
3	in	out	30.1±0 .6	5.6±0.2	4.4±0.2	3.1±0.2
4	out	out	23.9±0 .5	1.7±0.1	0.9±0.1	0.6±0.1
5	NC	Х	17.9±0 .4	3.1±0.2	2.4±0.2	1.5±0.1
Total			110.9± 1.1	16.3±0. 4	11.6±0. 3	7.8±0.3

Double Bang events

• Type 2 event are fully contained inside MR, but not both of the two showers could trigger the

detector $\sim 0.1/\text{yr}$ for $\lambda = 300 \text{ m},$ $E_{\text{th}} = 10^6 \text{ GeV}$

Concluding Remarks

- I have presented the motivations for high energy tau neutrino astronomy.
- The tau neutrino shower event rates and their angular distributions in the rock salt are presented. The event rates vary by about one order of magnitude from λ =300 m to λ =900 m.
- The v_{τ} and τ propagations inside the Earth are simulated in a full detail, while a toy model for the detector is used to obtain the event rates. However, one gets an idea on the geometric capacity of the SalSA detector.