<u>Geometric structures in hadronic cores of</u> extensive air shower observed by KASCADE

The KASCADE Collaboration

presented by Markus Risse Forschungszentrum Karlsruhe, Germany Institute of Nuclear Physics PAN, Kraków, Poland

C2CR, Prague, September 2005

Aligned event structures: Anything unusual?

Distances between hadrons: Connection to p_t

- → PhD thesis of Anna Risse
- → Phys. Rev. D 71, 072002 (2005)

Motivation: Aligned event structures

Theory: Alignment by

- ñ QCD jet production (Halzen & Morris, 1990)
- ñ exotic hadron production processes (e.g. Royzen, 1994)
- → If observed: information about hadron production ?

Alignment: Observations (starting >20 years ago)

"Unusual" events:

PAMIR (emulsion chambers at ~600 g cm⁻², E_{part} ~few TeV):

excess of aligned events for showers >8-10 PeV Concorde flight: most-energetic shower (~10 PeV) another >10 PeV shower in balloon borne emulsion

Alignment: Observations (starting >20 years ago)

"Unusual" events:

PAMIR (emulsion chambers at ~600 g cm⁻², E_{part} ~few TeV):

excess of aligned events for showers >8-10 PeV Concorde flight: most-energetic shower (~10 PeV) another >10 PeV shower in balloon borne emulsion

Fraction of aligned events agree to background:

PAMIR at few PeV

lower-energy Concorde events

RUNJOB (balloon) 0.01-0.1 PeV

NA22 (CERN) 250 GeV, pi-Au

Alignment: Observations (starting >20 years ago)

"Unusual" events:

PAMIR (emulsion chambers at ~600 g cm⁻², E_{part} ~few TeV):

excess of aligned events for showers >8-10 PeV Concorde flight: most-energetic shower (~10 PeV) another >10 PeV shower in balloon borne emulsion

(Some) Interpretations:

Exotic processes above energy threshold 8-10 PeV: antishadow scattering mode; semihard double inelastic diffraction; new particle w long mean free path produced in new interaction; secondaries with high transverse momentum p_t

Excess: Statistical fluctuation?

Alignment & KASCADE

Situation unclear: Alignment features exist, but ...

- \tilde{n} Can observations be related to hadron production?
- \tilde{n} Need for new physics? (Maybe above energy threshold?)

KASCADE:

- \tilde{n} Observes individual hadrons in shower cores
- ñ Covers claimed threshold energy of 8-10 PeV

Compare data to simulations and background estimation.

KASCADE

array (252 stations): showers >0.5 PeV direction ~1 deg primary energy ~25% shower core ~ 1.5 m 320 m² calorimeter: hadrons >50 GeV hadron energy ~ 20%hadron position ~15 cm

Data selection

05/1998 - 04/2001

primary energy >1 PeV

zenith angle < 30 deg

shower core inside calorim.
(>3 m from boundary)

at least 4 hadrons with energies >100 GeV

- → 4489 events
- → after transf. into shower plane, for each event:
- → λ_4 (now) and d_4^{max} (later)

Quantifying alignment: Lambda_4

$$\lambda_4 = \frac{1}{24} \cdot \sum_{i \neq j \neq k}^4 \cos 2\varphi_{ij}^k$$

 φ_{ij}^k : angle between lines connecting particle k to i and j

take 4 (most-energetic) hadrons sum all possible angles

isotropic: $\lambda_4 \rightarrow -1/3$

perfect alignment: $\lambda_4 \rightarrow 1$

→ "aligned event": $\lambda_4 > 0.8$

Aligned event observed by KASCADE

top view on calorimeter:

hadrons incident on calorimeter

energies given for 4 most-energetic hadrons

cross: shower core reconstr. by array

- Aligned events are observed !
- → Q: More often than expected ...?

Lambda_4 distribution: Data vs simulation

~agreement between:

data & simulation

no need for new physics

p and Fe primaries

indication of minor sensitivity to hadronic features

Does the fraction of aligned events depend on primary energy?

⁽simulations shifted horizontally)

Fraction of aligned events vs shower energy

no indication of threshold behaviour

Sensitivity to (standard model) physics?

Is there a connection alignment <-> hadronic interaction features? E.g. jet production (directionality!), and/or large p_t ?

- Check sensitivity by artificial modifications in simulation:
 - (i) increase p_t of secondaries by factor 2

(ii) random azimuth angle (in cms of collision) of secondaries

compare simulation results to standard version

Sensitivity to jet production or p_t?

Observed vs random distribution

random distribution:

- generate events with 4 "hadron" positions around "shower core"
 random azimuth angle
 random distance acc. to measured hadron lateral distribution
- obs. λ₄ distribution ~
 random distribution !

→ sensitivity to lateral distribution?

"Random" simulations and lateral distribution

modest changes even for very unrealistic choices

differences from diff. lateral distrib. hardly measurable

Aligned events at KASCADE

Aligned events are observed

Reproduced by simulations (-> no new physics needed)

No sensitivity of fraction of aligned events (or shape of λ_4 distribution) to jet production (doubled p_t , randomized azimuths)

Observed distribution well reproduced by random positioning of hadrons (very minor sensitivity on shape of lateral distribution)

Aligned events at KASCADE

Aligned events are observed

Reproduced by simulations (-> no new physics needed)

No sensitivity of fraction of aligned events (or shape of λ_4 distribution) to jet production (doubled p_t , randomized azimuths)

Observed distribution well reproduced by random positioning of hadrons (very minor sensitivity on shape of lateral distribution)

- Not necessarily in contradiction to alignment excesses in other observables, at different observation levels or primary energies
 - → e.g.: KASCADE @ 1020 g cm⁻², hadrons >100 GeV
 PAMIR @ 600g cm⁻², electromagn. component >few TeV
- → Comparison to PAMIR λ_4 distribution

Below claimed alignment threshold of 8-10 PeV

Above claimed alignment threshold of 8-10 PeV

Observables <-> hadron interaction features

- λ_4 (at KASCADE): no significant sensitivity
- Observables with sensitivity: E.g.
 - ñ hadron number, energy sum, ... (Journ. Phys. G, 1999)
 - ñ hadron & trigger rates ... (Journ. Phys. G, 2001)

- → Now: Hadron distances d₄^{max} <-> production height, p_t
 - \tilde{n} sensitivity expected !

A geometric observable with sensitivity: d₄^{max}

same selection criteria, same 4 hadrons per event

a distance measure in hadronic shower cores:

 d_4^{max} : max. distance of 1 hadron to geometric center of the 3 others

KASCADE data & simulation

- data bracketed by extremes (p and Fe)
- differences betw. p and
 Fe (contrary to λ₄!):
 protons deeper in atm.
 => secondaries still
 more confined

```
connection d_4^{max} & p_t
```

Simulation: Increase p_t of secondaries by factor 2

distributions broader

events with small d_4^{max} not reproduced (even for pure p) !

scenario of doubled p_t in high-energy hadron interactions disfavoured by data

Simulation: Reduce pt of secondaries by factor 2

distributions narrower

events with large d₄^{max} not reproduced (even for pure Fe) !

scenario of half p_t in high-energy hadron interactions disfavoured by data

Alignment:

- Observed
- Reproduced by simulations (-> no new physics needed)
- No sensitivity to jet production (doubled p_t, randomized azimuths)
- Reproduced by random positioning of hadrons
- Alignment distributions KASCADE ~ PAMIR

Distances:

- Sensitive to p_t and primary particle
- Data disfavour p_t differing by factor 2 from standard values