Photon air showers at highest energies

and the photonuclear cross-section

Markus Risse INP Kraków & Forschungszentrum Karlsruhe

in collaboration with Ralph Engel, Dieter Heck, Piotr Homola, Henryk Wilczyński, ...

C2CR, Prague, September 2005

Why searching for photon primaries ?

Features of photon-induced showers

Shower data & photons: Upper limits

Influence of & sensitivity to photonuclear cross-section

Highest energies: CR spectrum

There are events >100 EeV ! What are their sources??

Theoretical status

acceleration models (astrophysics):

- ñ active galactic nuclei, gamma-ray bursts, jets in radio galaxies, pulsars, ...
- → not easy to accelerate particles to >100 EeV

non-acceleration models (particle physics):

- ñ super-massive dark matter, monopoles, cosmic strings, necklaces, WIMPZILLAS, ...
- hypothetical objects that produce normal particles

to avoid GZK cut-off also for distant sources:

- ñ neutrinos in Z-Burst scenario (cosmology)
- ñ violation of Lorentz invariance (fundamental physics)

Non-acceleration models & photons

significant photon fractions predicted previous limits up to 40 EeV

Acceleration models & GZK photons

Auger N+S, photons/year: Up to ~60 (>10 EeV), ~2-3 (>100 EeV)

(absence of photons -> model constraints)

=> How to "identify" photon showers ?

Photon <u>vs</u> hadron: Fewer muons, deeper X_{max}

→ At 10^{19} eV: $\Delta < X_{max} > (photon, hadron) > 200 \text{ g cm}^{-2}$

Elongation rate: ΔX_{max} / per energy decade is changing !?

Photon shower: High-energy effects

 ΔX_{max} / energy decade ~ 85 g cm⁻² (-> Toy model: Equal energy splitting and λ_{rad})

Photon shower: LPM effect

Landau, Pomeranchuk (1953), Migdal (1956)

Matter effect: Interference when formation length becomes macroscopic

Pair production and bremsstrahlung **cross**sections reduced ~1/sqrt(ρE) (in h.e. limit)

Asymmetric energy distribution favoured

- → Effect increases with **air density** and **particle energy**
 - → If photon survives the first 50 g cm⁻², then larger probability to survive the next 50 g cm⁻² etc.
- → Influence on air showers ...

Photon shower: LPM effect

Delayed shower development due to LPM !

Large shower-to-shower fluctuations

Photon shower: Preshower effect

Cascade in geomagnetic field before "normal" air shower -> *PRESHOWER code: Homola et al., CPC, in press; astro-ph/0311442*

Geomagnetic field

Both conversion and synchr.emission = $f(B_t, E_{part})$

→ Precise field calculation required: IGRF

> Preshower effect: Depends strongly on direction !

Photon conversion: Different directions

Primary photons from "weak and strong B_t" direction

→ E.g. at 10^{20} eV: Almost always *vs* no conversion

Preshower particle spectra

(320 EeV photons, 1000 showers averaged, top of atmosphere)

instead of 1 photon of energy $3.2*10^{20}$ eV:

~1400 low-energy particles; most energy ~10¹⁹ eV

Photon shower: Preshower effect

Faster shower development, smaller fluctuations

Competition of LPM and preshower !

The most energetic Fly's Eye shower

October 15, 1991

"World record" (so far)!

(Bird et al., 1995)

	Best-Fit	Statistical	Systematic	Combined
Parameter	Value	Uncertainty	Uncertainty	Uncertainty
Energy [10 ¹⁸ eV]	320	$+35 \\ -40$	± 85	+92 -94
$X_{max} [g/cm^2]$	815	$+45 \\ -35$	± 40	$+60 \\ -53$
zenith angle [deg]	43.9	$^{+1.4}_{-0.6}$	±1.2	$^{+1.8}_{-1.3}$
azimuth angle [deg]	31.7	$\substack{+4.0\\-6.0}$	± 1.2	$^{+4.2}_{-6.1}$

Utah, USA

-> Compare photon simulation (PRESHOWER+CORSIKA) to data

Fly's Eye event & photon: X_{max}

Data: $815+-60 \text{ g/cm}^2$ < photon: $937+-26 \text{ g/cm}^2$

- → Discrepancy < 2 sigma
- > Photon origin possible (though not favoured)

Fly's Eye event & photons: Profile

Calculate probability of primary photon hypothesis

- → Photon: 1.5 sigma (13% probability)
- The most energetic event could have been a photon !

AGASA events >100 EeV

Non-acceleration models try to explain AGASA excess !

111 scintillator and
27 muon detectors
on ~100 km²

Akeno Observatory 35.7°N 138.5°E 900m asl. 920g/cm²

-> Check these events!

AGASA events >100 EeV and photons

AGASA data: Shinozaki et al., 2002

In six AGASA events >100 EeV: muon density at 1000 m measured

- → Data: Points with error bars
- → Photon simulation: Histograms
- → Calculate consistency between data & photon prediction

AGASA events >100 EeV and photons

AGASA data: Shinozaki et al., 2002

Prob. that photons produce chi2 larger than measured (from MC)

Prob., all 6 are photons: 0.5%

- > Derive limit on photon fraction
- → Stat. method accounts for small statistics, shower fluctuations, shower properties varying from event to event: PRL 2005, in press

Photon Upper Limit

(MR et al., PRL, in press)

Models with dominant photon fraction disfavoured: upper limit 51% (90% CL), 67% (95% CL) above 125 EeV

→ Method (limit from small shower statistics) -> Auger, HiRes ...

Auger South & Photons

(ICRC 2005, Pune)

Hybrid events (telescope and array): Improved geometry

High-quality selection criteria

 $\Delta X_{\text{max}} \sim 40 \text{ g cm}^{-2}$

→ 16 events above 10 EeV

total: 4x6 telescopes 1600 array stations

Example: Auger event

Auger photon limit

26% upper limit (95% CL) on cosmic-ray photon fraction Confirms and improves previous limits above 10^{19} eV

Discrimination power of Auger array data

Standard array reconstruction:

- Rise time of detector signal at 1000 m core distance
- → Curvature of shower front

Observed values below photon prediction

Observables sensitive to shower muons !

(Auger Collab., astro-ph/0507402)

Photon future at Auger

Hybrid statistics factor ~10 larger within ~2 years

Array-only analysis:

- → Factor ~10 more events than hybrid
- → Caveat: acceptance to photons

Much lower photon fractions (also at higher energy) tested soon

Northern site: Different geomagnetic field (orientation & strength)

- > Different preshower pattern !
- → E.g.: Check possible photon signal from Southern site (prediction of different shower features for North)

High-energy photonuclear cross-section

Effect on photon showers if, e.g., $\sigma_{PDG} \rightarrow \sigma_{extr}$?

- → Qualitatively: Photon showers more hadron-like
- > Question to theoreticians: How large is allowed ??

Effect on 320 EeV Fly's Eye event

For σ_{extr} : <X_{max}>: 937 --> 905 g cm⁻²

- → Photon discrepancy: 1.5 --> ~1.2 sigma
- → ~ modest effect due to preshowering

Effect on AGASA events

For σ_{mod} : upper limit 67% -> 75% (95% CL)

For σ_{extr} : **no upper limit can be set!** (all 6 are photons: 15%)

- → Muon densities increase by ~70-80%
- → Note: Also previous upper limits affected !
- > Could primary photons "hide" behind a large cross-section?

A critical scenario:

Would a photon component be observable even with large cross-section (e.g. σ_{extr})?

More difficult ... but still photons deeper and with fewer muons compared to protons:

 $\Delta < X_{max} > ~(180 ... 50) \text{ g cm}^{-2}$ ratio $< N_{\mu} > ~ \text{factor } \sim 2$

Let's turn it around now: Photon shower features are sensitive to the cross-section; so ... **Experimental limit on photonuclear cross-section !?**

In case of photon observation (necessary condition!)

• Different photon shower features for σ_{PDG} and σ_{extr} :

$$\Delta < X_{max} > ~(>100 ... 30) \text{ g cm}^{-2}$$

ratio $< N_{\mu} >$ factor ~1.8

→ Special sub-classes of photon events, e.g.:
 Deeply starting photon w/o photonuclear interaction -> suppressed for σ_{extr}: mean free path ~150 g cm⁻² at ~100 EeV

(Work in progress ...)

Conclusion: Photons at highest energies ...

Even **absence** interesting to constrain source models !

- $\sigma_{\gamma-air}$: systematic uncertainty in photon upper limit
- Q: How large could $\sigma_{\gamma-air}$ be?

If observed: Even more interesting ...

- Limit on $\sigma_{\gamma-air}$ might be placed; e.g. from
 - Shower features (X_{max}, N_{μ})
 - Special event sub-classes

"Standard" elongation rate: toy model

each vertex: equal energy splitting => after n=X/ λ steps: N(X) = 2^{X/ λ} particles with E(X) = E₀/N(X)

particle multiplication stops at

 $E(X) = E_L \implies \text{shower maximum:}$ $N(X_{max}) = E_0 / E_L$ $X_{max} = \lambda / \ln 2 * \ln(E_0 / E_L)$

=> elongation rate:

$$\Delta \mathbf{X}_{\max} = \mathbf{X}_{\max}(10\mathbf{E}_0) - \mathbf{X}_{\max}(\mathbf{E}_0) = \lambda/\ln 2 * \ln(10)$$

$$= 37 \text{ g/cm}^2 * 2.30 = 85 \text{ g/cm}^2 \text{ with } \lambda_{rad} = \lambda/\ln 2$$

X [g/cm²] (*atm. depth*)

(Heitler 44)

Addendum: Statistical treatment

astro-ph/0502418

chance probability for hypothetical F_{γ} to get χ^2 values \geq than found in data:

$$P(F_{\gamma}) = \sum_{n_{\gamma}=0}^{n_{\mathrm{m}}} q(F_{\gamma}, n_{\gamma}, n_{\mathrm{m}}) \cdot p_{\gamma}(n_{\gamma}) \cdot p_{\overline{\gamma}}(n_{\mathrm{m}} - n_{\gamma})$$

probability that ...

$$q(F_{\gamma}, n_{\gamma}, n_{\rm m}) = F_{\gamma}^{n_{\gamma}} (1 - F_{\gamma})^{n_{\rm m} - n_{\gamma}} \binom{n_{\rm m}}{n_{\gamma}} \qquad \qquad \chi_j^2 = \frac{(X_{\rm max}^j - \langle X_{\rm max}^{j,{\rm s}} \rangle)^2}{(\Delta X_{\rm max}^j)^2 + (\Delta X_{\rm max}^{j,{\rm s}})^2}$$

 $p_{\overline{\gamma}}(n_{\mathrm{m}} - n_{\gamma})$: are set to unity (no test on ``non-photons'')

$$p_{\gamma}(n_{\gamma})$$
 : take n_{γ} most photon-like looking events $\Rightarrow \sum_{i=1}^{n_{\gamma}} \chi_{k_i}^2$ is minimal;
determine $p_{\gamma}(\chi^2 \ge \sum_{i=1}^{n_{\gamma}} \chi_{k_i}^2)$ with MC technique (non-Gaussian fluct.!)

→ with confidence 1- $P(F_{\gamma})$, photon fractions $\geq \epsilon F_{\gamma}$ can be rejected

Photon conversion altitudes

primary photons from "strong B_t" direction

→ smaller energy <=> closer to atmosphere (if at all)

Synchrotron emission

prob. distribution of emitted photon vs fractional energy

 \Rightarrow increasing B_t and E: more and harder emission

Highest energies: CR spectrum

There are events >100 EeV !! What are their sources??