The COMPASS Experiment and the SPIN structure of the NUCLEON

Franco Bradamante Trieste University and INFN

Prague Scientific Symposium 26/10/2012

LHC

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

fixed target experiment at the CERN SPS

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

fixed target experiment at the CERN SPS

physics programme:

hadron spectroscopy (p, π , K)

- light mesons, glue-balls, exotic mesons
- polarisability of pion and kaon

nucleon structure (μ)

- longitudinal spin structure
- transverse momentum and transverse spin structure

The Spectrometer

designed to

- use high energy beams
- have large angular acceptance
- cover a broad kinematical range

two stages spectrometer

• Large Angle Spectrometer (SM1)

COMP AS

Small Angle Spectrometer (SM2)

The Spectrometer

designed to

- use high energy beams
- have large angular acceptance
- cover a broad kinematical range

two stages spectrometer

Large Angle Spectrometer (SM1)

COMPAS

Small Angle Spectrometer (SM2)

The Spectrometer

COMPASS

The RICH 1 (<2005)

The RICH 1 (<2005)

The RICH 1 Upgrade (2005)

The RICH 1 Upgrade (2005)

L,

Prague, 26/10/2012

The RICH 1 Upgrade (2005)

optical parameters, interferometric measurements Optical Development Workshop of CAS (Turnov, CZ)

optical parameters, Hartmann test, University of Liberec (CZ)

The RICH 1 (>2005)

sum over several events

a single event

The RICH 1 (2006-2011)

mean number of photons / ring in the different photon detector sectors

~ 10 on MWPC ~ 60 on MAPMTs

The RICH 1 (2006-2011)

mean number of photons / ring in the different photon detector sectors

~ 10 on MWPC ~ 60 on MAPMTs

upgrade for DVMP/SIDIS 2015-...

Trieste Turin Freiburg Prague

The Polarized Target System (>2005)

Prague, 26/10/2012

The Polarized Target System (>2005)

The Polarized Target System (>2005)

Data Taking

Prague, 26/10/2012

2002	nucleon structure with	160 GeV μ	L&T	polarised deuteron target			
2003	nucleon structure with	160 GeV μ	L&T	polarised deuteron target			
2004	nucleon structure with	160 GeV μ	L&T	polarised deuteron target			
2005	CERN accelerators shut down						
2006	nucleon structure with	160 GeV μ	L	polarised deuteron target			
2007	nucleon structure with	160 GeV μ	L&T	polarised proton target			
2008	hadron spectroscopy						
2009	hadron spectroscopy						
2010	nucleon structure with	160 GeV μ	Т	polarised proton target			
2011	nucleon structure with	190 GeV μ	L	polarised proton target			
2012	Primakoff & DVCS / S	IDIS test					

COMPASS Physics case

... from a talk at SPIN 2000

acknowledgement that it is still worthwhile to invest in trying to answer some questions which have been with us since 30 years

how is a nucleon made up ?

! spin structure !

are there non qqq or qq hadrons ?
! exotics !

fundamental problems of QCD

- role of the axial anomaly to the spin of the proton
- glueballs () non abelian nature of QCD

the COMPASS experiment and the HADRON PROGRAM

Prague, 26/10/2012

mesons

quantum numbers in CQM

$$S = 0, 1; \ \vec{J} = \vec{L} + \vec{S}; \ P = (-1)^{L+1}; \ C = (-1)^{L+S}$$

forbidden (exotic QN's)

$$J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$$

mesons

quantum numbers in CQM

S = 0, 1;
$$\vec{J} = \vec{L} + \vec{S}$$
; **P** = $(-1)^{L+1}$; **C** = $(-1)^{L+S}$

forbidden (exotic QN's)

$$J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$$

more states in QCD: hybrids $|q\bar{q}g\rangle$, glueballs $|gg\rangle$, multiquark states $|qq\bar{q}\bar{q}\bar{q}\rangle$

diffractive dissociation:

Prague, 26/10/2012

Hadron Spectroscopy

example: $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

sample with 100M events

Hadron Spectroscopy

example: $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

- Analysis:
 - Partial Wave Analysis (PWA) in mass bins with up to 53 waves
 - fit of spin-density matrix for major waves with Breit-Wigner

Hadron Spectroscopy

example: $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$ major waves

COMPASS hadron programme: Tests of χ PT

Prague, 26/10/2012

COMPASS hadron programme: Tests of χ PT

pion (and kaon) polarisability via Primakoff scattering

present exp. situation confused

	· · · · · · · · · · · · · · · · · · ·			
	$\alpha_{\pi} - \beta_{\pi}$	$\alpha_{\pi} + \beta_{\pi}$	$\alpha_2 - \beta_2$	
	(10^{-4} fm^3)	(10^{-4} fm^3)	(10^{-4} fm^3)	
2-loop ChPT prediction	5.7 ± 1.0	0.16 ± 0.10	16	
COMPASS sensitivity	± 0.66	± 0.025	± 1.94	

COMPASS hadron programme: Tests of χ PT

pion polarisability via Primakoff scattering preliminary result, 2009 data

$$\alpha_{\pi} = 1.9 \pm 0.7_{stat} \pm 0.8_{syst} \cdot 10^{-4} \, fm^3$$

the COMPASS experiment and the SPIN Structure of the NUCLEON

Prague, 26/10/2012

$$\mu_p = \frac{4}{3}\mu_u - \frac{1}{3}\mu_d \qquad \mu_n = \frac{4}{3}\mu_d - \frac{1}{3}$$

assuming u and d Dirac particles with

at

$$m \cong \frac{1}{3}M_N$$

$$\mu_{u} = \frac{q_{n}}{2m_{u}c} = 2\mu_{N} \qquad \mu_{d} = -\mu_{N} \qquad \frac{\mu_{p}}{\mu_{n}} = -\frac{3}{2}$$
$$\mu_{p} = 3\mu_{N} \qquad \mu_{n} = -2\mu_{N}$$

Prague, 26/10/2012

 μ_{u}

in this model the spin of the nucleon is given by the spin of the quarks

Prague, 26/10/2012

CRITICAL REVIEW OF THE CONCEPTS

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_Z$$

NECESSITY

- to remeasure the proton
- to measure the neutron
- to measure ΔG

experiments

a worldwide effort since decades

experiments

a worldwide effort since decades

			SPIN C	RISIS	
	1970	1980	1990	2000)
SLAC					
	E80	E130	E142,	/3 E154/5	
CERN					
		EN	IC SM	C COM	1PASS
DESY					
				HERMES	
JLab					
				CLAS/	HALL-A
RHIC					
				Phe	nix/Stai
ague, 26/10/2012					F. Bradamar
The Quark Contribution to the Nucleon Spin

$$\Delta \Sigma = \Delta u + \Delta d + \Delta S \quad \text{Helicity PDFs} \\ \Delta q = \int_0^1 \left[\Delta q(x) + \Delta \overline{q}(x) \right] dx = \int_0^1 \left[q^+(x) - q^-(x) + \overline{q}^+(x) - \overline{q}^-(x) \right] dx$$

∆q's can be extracted from the DIS cross-section asymmetry for parallel and antiparallel lepton and nucleon spins

Inclusive DIS, beam and target longitudinally polarized

g₁ measured at SLAC, EMC, SMC, HERMES, COMPASS

g₂ suppressed by a factor γ²≈0.01 at 100 GeV (SMC, SLAC)

in the parton model

$$\mathbf{g}_{1}(\mathbf{x}) = \frac{1}{2} \sum_{\mathbf{q}} \mathbf{e}_{\mathbf{q}}^{2} \cdot \left[\Delta \mathbf{q}(\mathbf{x}) + \Delta \overline{\mathbf{q}}(\mathbf{x}) \right]$$

Prague, 26/10/2012

The Structure Function g₁(x,Q²)

Prague, 26/10/2012

The Structure Function g₁(x,Q²)

- very precise data
- only COMPASS for x < 0.01 (Q² > 1)
- deuteron data: $\Delta\Sigma = 0.33 \pm 0.03 \pm 0.05$ $\Delta s + \Delta \overline{s} = -0.08 \pm 0.01 \pm 0.02$

The Structure Function $g_1(x,Q^2)$

The Structure Function $g_1(x,Q^2)$

Bjorken sum rule

Measurements of \Delta G/G

direct

- cross-section asymmetry for charm production
- cross-section asymmetry for high p_T hadron pairs

indirect

 scale violation of g₁(x,Q2) (QCD fit) SMC, SLAC Experiments, HERMES, COMPASS

Photon Gluon Fusion

q = c cross section difference
in charmed meson production
→ theory well understood

 \rightarrow experiment challenging **COMPASS**

q = u,d,s cross section difference in 2+1 jet production: events with hadrons with high-p_t → experiment easy → theory more difficult

COMPASS & HERMES

The Gluon Contribution to the Nucleon Spin

all LO results

Prague, 26/10/2012

THE SPIN PUZZLE

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_Z$$
$$\Delta\Sigma \sim 1/3$$
$$\Delta G \text{ small}$$

- necessity to address L_q and $L_g \rightarrow$ Ji sum rule GPD
- GROWING INTEREST IN TRANSVERSE SPIN PHENOMENA

Prague, 26/10/2012

The Structure of the Nucleon

three distribution functions are necessary to describe the quark structure of the nucleon at LO in the collinear case (Jaffe and Ji, 1991)

The Structure of the Nucleon

three distribution functions are necessary to describe the quark structure of the nucleon at LO in the collinear case (Jaffe and Ji, 1991)

Probing Transversity

transversely polarized DY (as proposed by Ralston & Soper)

A_{TT} in pp DY very small dream option: measure ppbar DY

Semi-Inclusive Deep Inelastic Scattering

Collins asymmetry: sin ($\phi_h + \phi_s$)

correlation between spin of quark and transverse momentum of hadrons convolution of Transversity and Collins FF

measurable as an azimuthal modulation of the hadrons

Prague, 26/10/2012

Transversity distribution extracted from SIDIS

Alternative way to access Transversity in SIDIS

two-hadron asymmetry

azimuthal asymmetry in $\phi_{RS} = \phi_{R^{\perp}} + \phi_s$

 $\phi_{R^{\perp}}$ is the azimuthal angle of the plane defined by the two hadrons

product of Transversity and Interference FF

A. Bacchetta, M. Radici, hep-ph/0407345 X. Artru, hep-ph/0207309

Alternative way to access Transversity in SIDIS

two-hadron asymmetry

Transversity distribution extracted from two-hadron asymmetries in SIDIS

following the work of A Bacchetta, A. Courtoy, M Radici Phys.Rev.Lett.107:012001,2011

first direct extraction of u and d transversity using deuteron 2002-2004 and proton 2010 COMPASS results

C.Elia Ph.D Thesys, Trieste 2012

curves: global fits of COMPASS d, HERMES p, BELLE e+e- data (M. Anselmino et al. PRD 75 (2007) 054032)

Prague, 26/10/2012

Prague, 26/10/2012

- There are some phenomena involving transverse momenta (and transverse spin) which are not accounted for by a collinear pQCD description
- When the observed transverse momentum P_T is much smaller than the hard scale Q (two-scale process), one has to introduce the transverse-momentum dependent (or "unintegrated") distributions (TMDs)
- The TMD physics was prompted by the study of transverse spin phenomena but has also led to an improved QCD knowledge of ordinary, unpolarized, TMDs

transverse spin couples to transverse momentum giving rise to a number of possible correlations

Sivers function:

 $f_{1T}^{\perp} =$

unpolarized quarks in a transversely polarized nucleon

$$f_{q/p^{\dagger}}(x, \boldsymbol{p}_T) = f_1^q(x, p_T^2) - f_{1T}^{\perp q}(x, p_T^2) \frac{(\widehat{\boldsymbol{P}} \times \boldsymbol{p}_T) \cdot \boldsymbol{S}}{M}$$

→ azimuthal single-spin sin $(\phi_h - \phi_s)$ asymmetry

Boer-Mulders function: transversely polarized quarks in an unpolarized nucleon

$$\mathbf{h}_{1}^{\perp} = \mathbf{P}_{1} - \mathbf{P}_{1} + \mathbf{P}_{T} + \mathbf{P}_{T} = \frac{1}{2} \left[f_{1}^{q}(x, p_{T}^{2}) - h_{1}^{\perp q}(x, p_{T}^{2}) \frac{(\widehat{P} \times p_{T}) \cdot S_{q}}{M} \right]$$

→ azimuthal $\cos \phi_h$ and $\cos 2\phi_h$ asymmetries

the gauge structure of TMDs

$$(x, \boldsymbol{k}_T) = \int \frac{\mathrm{d}\xi^-}{2\pi} \int \frac{\mathrm{d}^2 \boldsymbol{\xi}_T}{(2\pi)^2} \mathrm{e}^{\mathrm{i}xP^+ \xi^-} \, \mathrm{e}^{-\mathrm{i}\boldsymbol{k}_T \cdot \boldsymbol{\xi}_T} \, \langle P, S | \bar{\psi}(0) \, \mathcal{W}[0, \boldsymbol{\xi}] \, \psi(\xi) | P, S \rangle|_{\boldsymbol{\xi}^+ = 0}$$

 $\mathsf{SIDIS}: \mathcal{W}[0,\xi] = \mathcal{W}^{-}[0,\infty] \, \mathcal{W}^{T}[0_{T},\infty_{T}] \, \mathcal{W}^{T}[\infty_{T},\xi_{T}] \, \mathcal{W}^{-}[\infty,\xi]$

the existence of Sivers and Boer-Mulders functions is a consequence of the gauge link structure, which also implies

TMD (SIDIS) = - TMD (DY)

this is a fundamental test of gauge invariance

Prague, 26/10/2012

The Structure of the Nucleon

taking into account the quark intrinsic transverse momentum k_T , at leading order other 6 TMD PDFs are needed for a full description of the nucleon quark structure

The Structure of the Nucleon

taking into account the quark intrinsic transverse momentum k_T , at leading order other 6 TMD PDFs are needed for a full description of the nucleon quark structure

SIDIS gives access to all of them

Prague, 26/10/2012

Sivers asymmetry on proton

charged hadrons, 2010 data PLB 717 (2012) 383

clear positive signal for h⁺, which extends to small x EVIDENCE FOR ORBITAL ANGULAR MOMENTUM OF QUARKS

Sivers asymmetry on proton

charged pions, 2010 data SPIN2012

comparison with HERMES

Prague, 26/10/2012

Sivers asymmetry on proton

charged pions, 2010 data SPIN2012

comparison with HERMES

... TMD Q2 evolution: the very new developments !

Prague, 26/10/2012

CONCLUSIONS

- the quarks contribute 1/3 of the nucleon spin
- the relative size of DG and L not clearly assessed
- COMPASS II will address L via DVCS
- TRANSVERSE SPIN AND MOMENTUM PHENOMENA: NEW Properties of matter have been unveiled Transversity and Collins effect, Sivers effect OTHER correlations are still possible (Boer-Mulders)
- COMPASS II should be able to
 - test the predicted sign change of the Sivers function from SIDIS to D-Y
 - perform precise measurements of unpolarised SIDIS azimuthal asymmetries on p
- COMPASS has a great discovery potential for glueballs and hybrids

Prague, 26/10/2012

THANK YOU !

Prague, 26/10/2012

future measurements

Table 2: Summary of the different physics items for the far and near future. Already approved measurements are in bold.

	physics item	key aspects of the measurement
GPD	H t-slope parameter B	RPD, Beam Charge and Spin Asymmetries $d\sigma/dt$
	E	transversely polarized proton target
SIDIS	hadron multiplicities for π and K	PID and absolute acceptance
	$h_{1,u}^{\perp}, h_{1,d}^{\perp}$	azimuthal modulations and PID
	h_1^d with same accuracy as h_1^u	transversely polarized deuteron target
	f_1^{\perp} evolution	100 GeV and transversely polarized proton target
DY	sign change for f_1^{\perp} and h_1^{\perp}	transversely polarized proton target
	universality of TMD PDFs	higher statistics with transversely polarized proton target
	flavor separation	transversely polarized deuteron target
	test of the Lam-Tung relation	hydrogen target
	EMC effect in DY	different nuclear targets

P. Newman in Cracow

COMPASS planned measurements in the next five years and longer term perspectives on the study of the nucleon structure

hard interaction of a lepton with a nucleon via virtual photon exchange

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xy\,Q^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\,\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}\right\} \text{ unpol target} \\ &\left(+\varepsilon\cos(2\phi_{h})F_{UU}^{\cos2\phi_{h}}+\lambda_{e}\sqrt{2\,\varepsilon(1-\varepsilon)}\sin\phi_{h}F_{LU}^{\sin\phi_{h}}\right) + S_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\,\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{LL}^{\cos\phi_{h}}\right]\right\} \\ &\left.+\left|S_{\parallel}\right|\left[\sin(\phi_{h}-\phi_{S})\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\right] \\ &+\left|S_{\perp}\right|\left[\sin(\phi_{h}-\phi_{S})\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon \sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\right)\right] \\ &+\left(S_{\perp}\right)\left[\int_{U}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin(\phi_{h}+\phi_{S})}+\varepsilon \sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\right] \\ &+\left(S_{\perp}\right)\left[\int_{U}\left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S})F_{LT}^{\cos(\phi_{h}-\phi_{S})}+\sqrt{2\,\varepsilon(1-\varepsilon)}\cos\phi_{S}F_{LT}^{\cos\phi_{S}}\right] \\ &+\left(\sqrt{2\,\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right)\right] \\ &+\left(S_{\perp}\right)\left[\sqrt{2\,\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right] \\ &+\left(S_{\perp}\left[\sqrt{1-\varepsilon^{2}}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right]\right] \\ &+\left(S_{\perp}\left[\sqrt{2\,\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right]\right] \\ &+\left(S_{\perp}\left[\sqrt{2\,\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right] \\ &+\left(S_{\perp}\left[\sqrt{2\,\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right]\right] \\ &+\left(S_{\perp}\left[\sqrt{2\,\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right] \\ &+\left(S_{\perp}\left[\sqrt{2\,\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right] \\ &+\left(S_{\perp}\left[\sqrt{2\,\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right] \\ &+\left(S_{\perp}\left[\sqrt{2\,\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2$$

Prague, 26/10/2012

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} = \frac{14 \text{ independent}}{\operatorname{azimuthal}} \\
\frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h} F_{UU}^{\cos\phi_{h}} \right. \\
\left. + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos(2\phi_{h}} + \lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}} F_{LU}^{\sin\phi_{h}} \\
\left. + S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} + \varepsilon \sin(2\phi_{h}) F_{UL}^{\sin\phi_{h}} \right] + S_{\parallel}\lambda_{e} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h} F_{LL}^{\cos\phi_{h}} \right] \\
\left. + \left| S_{\perp} \right| \left[\frac{\sin(\phi_{h}-\phi_{S})}{\sin(\phi_{h}-\phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})} \right] \\
\left. + \varepsilon \sin(\phi_{h}+\phi_{S}) F_{UT}^{\sin(\phi_{h}+\phi_{S})} + \varepsilon \sin(3\phi_{h}-\phi_{S}) F_{UT}^{\sin(3\phi_{h}-\phi_{S})} \\
\left. + \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S} F_{UT}^{\sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S}) F_{UT}^{\sin(2\phi_{h}-\phi_{S})} \right] \\
\left. + \left| S_{\perp} \right| \lambda_{e} \left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S}) F_{LT}^{\cos(\phi_{h}-\phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} F_{LT}^{\cos\phi_{S}} \\
\left. + \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S}) F_{LT}^{\cos(2\phi_{h}-\phi_{S})} \right] \right\},$$

Prague, 26/10/2012

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h_{\perp}}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}} t_{UU}^{\cos\phi_{h}} + \varepsilon \cos\phi_{h} t_{UU}^{\cos\phi_{h}} + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} + \lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}} F_{LU}^{\sin\phi_{h}} + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} + \lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}} F_{LU}^{\sin\phi_{h}} + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} + \lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}} F_{LU}^{\sin\phi_{h}} + \varepsilon \sin(2\phi_{h}) F_{UL}^{\sin\phi_{h}} + \varepsilon \sin(2\phi_{h}-\phi_{S}) F_{UT}^{\sin(\phi_{h}-\phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})} + \varepsilon \sin(3\phi_{h}-\phi_{S}) F_{UT}^{\sin(3\phi_{h}-\phi_{S})} + \varepsilon \sin(3\phi_{h}-\phi_{S}) F_{UT}^{\sin(3\phi_{h}-\phi_{S})} + \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S} F_{UT}^{\sin(2\phi_{h}-\phi_{S})} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{S} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} + \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S}) F_{LT}^{\cos(2\phi_{h}-\phi_{S})} \right] \bigg\}, \end{aligned}$$

Prague, 26/10/2012

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h,\perp}^2} =$$

$$\frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1+\frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)\cos\phi_h} r_{UU}^{\cos\phi_h} \right\} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos(2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)\sin\phi_h} F_{LU}^{\sin\phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos(2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)\sin\phi_h} F_{LU}^{\sin\phi_h} + \varepsilon \cos(2\phi_h) F_{UL}^{\cos(2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)\sin\phi_h} F_{LU}^{\sin\phi_h} + \varepsilon \cos(2\phi_h) F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\cos\phi_h} + \varepsilon \cos(2\phi_h) + \varepsilon \cos(2\phi_h) F_{UL}^{\cos\phi_h} + \varepsilon \cos(2\phi_h) F_{UL}^{\cos\phi$$

Prague, 26/10/2012

Collins asymmetry

amplitude of the $\sin \Phi_C$ modulation in the azimuthal distribution of the final state hadrons

$$N_h^{\pm}(\Phi_C) = N_h^0 \Big[1 \pm P_T \cdot D_{NN} \cdot A_{Coll} \cdot \sin \Phi_C \Big]$$

today the most promising way to access transversity, together with 2h asymmetry

Collins asymmetry on proton

charged hadrons 2010 data

Collins asymmetry on proton

charged hadrons 2010 vs 2007 data

TMD factorization

Observables = Universal TMDs × pQCD Coefficients

$$W^{\mu\nu} = \sum_{f} |\mathcal{H}_{f}(Q;\mu)^{2}|^{\mu\nu} \int d^{2}\mathbf{k}_{1T} d^{2}\mathbf{k}_{2T} \delta^{(2)}(\mathbf{k}_{1T} + \mathbf{q}_{T} - \mathbf{k}_{2T}) \times F_{f/p}(x,\mathbf{k}_{1T};\mu;\zeta_{F}) D_{h/f}(z,z\mathbf{k}_{2T};\mu;\zeta_{D}) = \sum_{f} |\mathcal{H}_{f}(Q;\mu)^{2}|^{\mu\nu} \int \frac{d^{2}\mathbf{b}_{T}}{(2\pi)^{2}} e^{-i\mathbf{q}_{T}\cdot\mathbf{b}_{T}} \times \tilde{F}_{f/p}(x,\mathbf{b}_{T};\mu;\zeta_{F}) \tilde{D}_{h/f}(z,\mathbf{b}_{T};\mu;\zeta_{D})$$
Collins, Soper Ji, Ma, Yuan

<section-header>Perturbative QCDJOHN COLLINSMARRINGE MONOGRAPHS
ENARCE/ADD SUMOLOGY12

Foundatio

Prague, 26/10/2012

The Quark Contribution to the Nucleon Spin

 $\Delta \Sigma = \Delta u + \Delta d + \Delta s$

in polarised DIS one measures

$$\mathbf{g}_{1}(\mathbf{x}) = \frac{1}{2} \sum_{\mathbf{q}} \mathbf{e}_{\mathbf{q}}^{2} \cdot \Delta \mathbf{q}(\mathbf{x})$$

$$\Gamma_{1} = \int_{0}^{1} \mathbf{g}_{1}(\mathbf{x}) \, \mathbf{d}\mathbf{x}$$

F. Bradamante

using complementary information from the WEAK DECAY CONSTANTS of the BARYONS

 $\Delta u - \Delta d = F + D = 1.257 \pm 0.003$

 $\Delta u + \Delta d - 2 \Delta s = 3F - D = \sqrt{3} \cdot \left[0.34 \pm 0.02\right]$

one can get $\Delta \mathbf{U}, \Delta \mathbf{d}, \Delta \mathbf{S}$ and then $\Delta \Sigma$

Prague, 26/10/2012