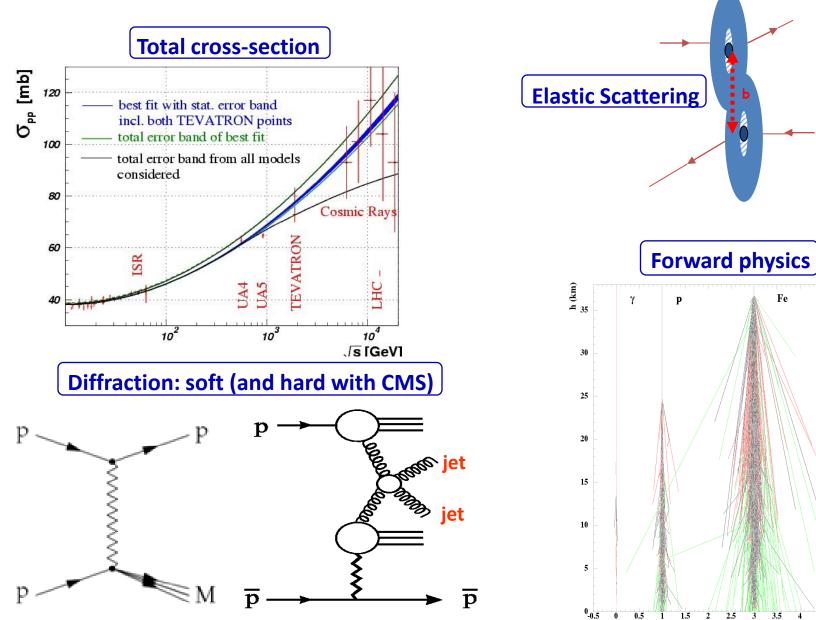
TOTEM Experiment & Physics Results

Scientific Symposium 20th Rep.Czech - CERN Academy of Sciences, Prague 26 October 2012

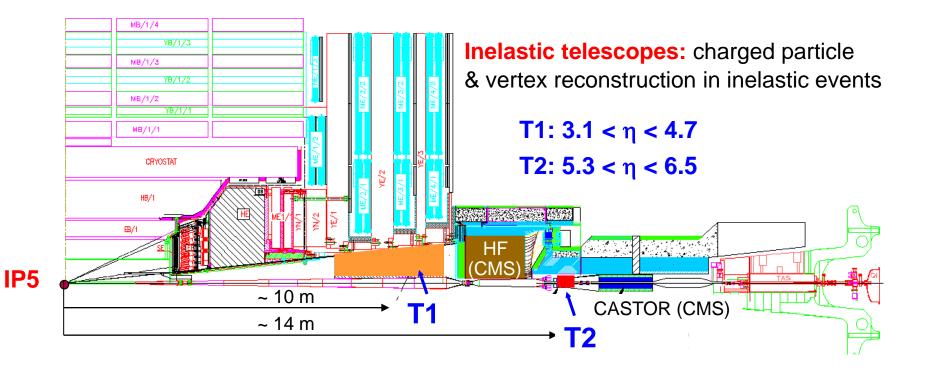

S.Giani CERN – CH [on behalf of the TOTEM collaboration]

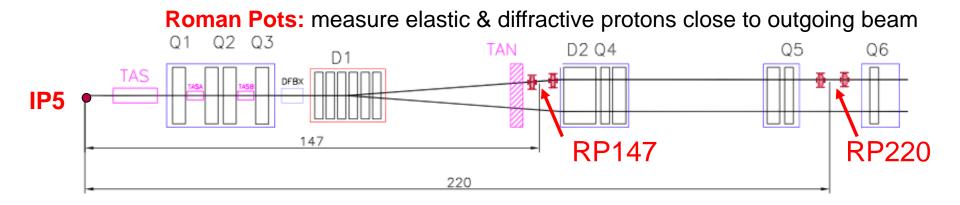
Outlook

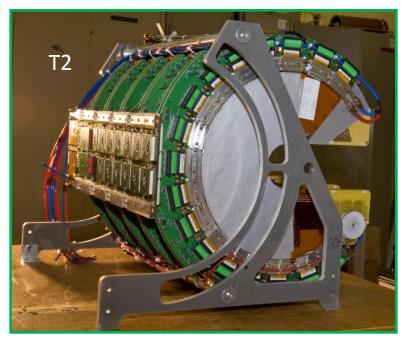
- TOTEM Experiment
- LHC Special Runs and TOTEM Data
- PP Elastic Scattering Differential Cross-Section
- Total, Elastic, Inelastic Cross-Sections @ $\sqrt{s} = 7-8$ TeV
- Perspectives on Forward and Diffractive Physics

TOTEM EXPERIMENT

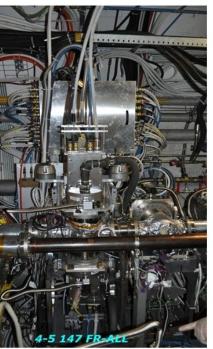
TOTEM Physics Overview

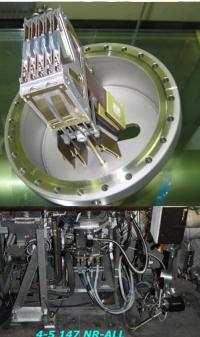

4.5 x (km)


2.5


3 3.5

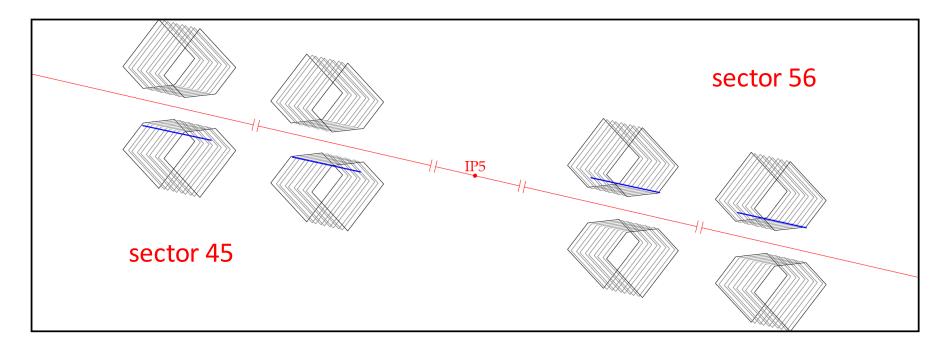
Fe


Experimental Setup @ IP5

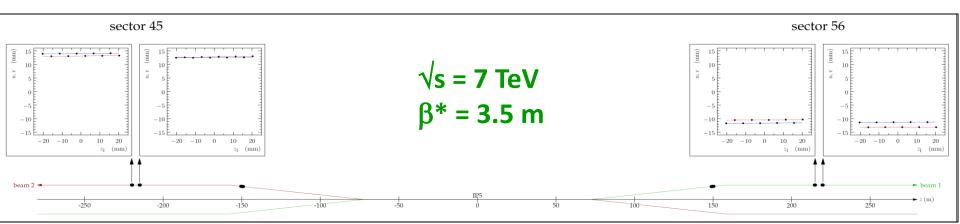


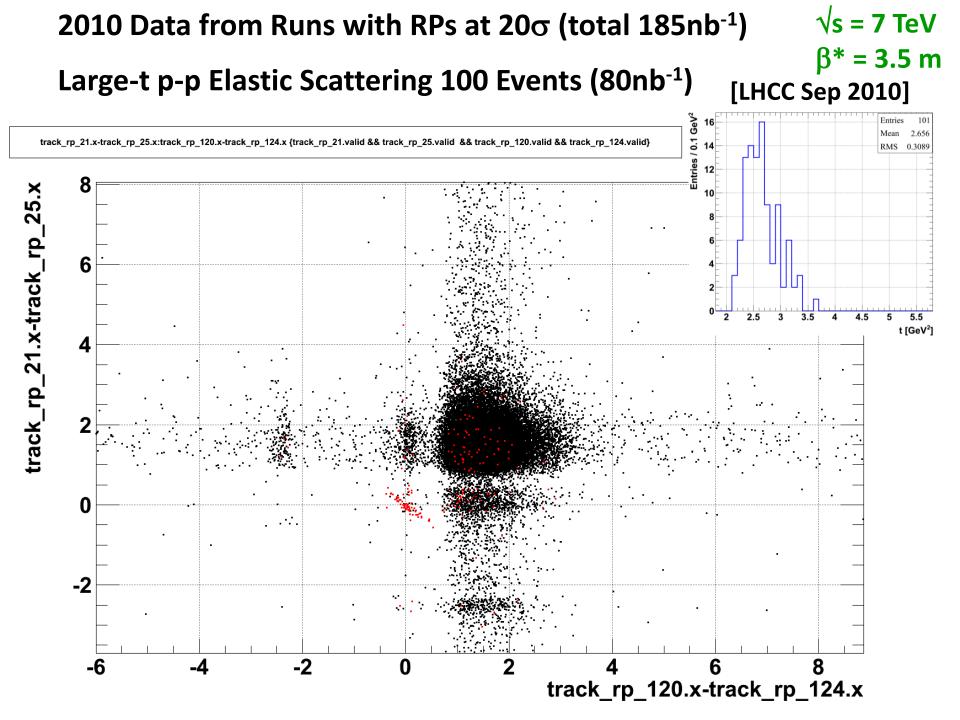
Detectors

- T1 and T2 detectors are installed and fully operational
- Roman Pot Silicon detectors are fully operational


Prague's contributions on RP mechanics, cooling, electronics

TOTEM Collaboration


- Countries: 7
- Institutes: 15
- Collaborators: ~ 100
- Authors: ~ 80
- Construction: ~ 7 MCHF


LHC SPECIAL RUNS AND TOTEM DATA

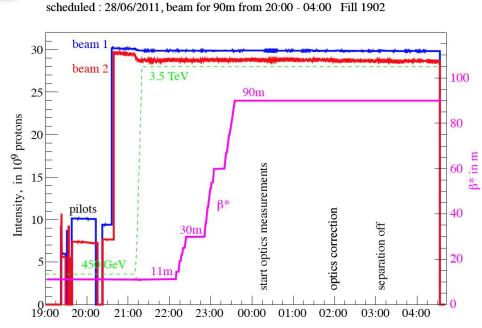
2010 Data from Runs with RPs at 25σ (1.5nb⁻¹) First p-p Elastic Scattering Event Candidates [LPCC July 2010]

Event scanning and constraining analysis procedure

Runs & Data Statistics 2010-2011

Date	Detector configuration	β* [m]	$\int L dt$ [nb⁻¹]	Analysis	
Oct 2010	RP at 7o; T2 in readout	3.5	6.8	Elastic so	cattering 0.36 <	t < 2.5 GeV ²
Sep/Oct 2010	RP at 18σ	3.5	2300	D Elastic so (in progress	cattering - large ^{s)}	tl
May 2011	RP at 5σ; T1, T2 in readou	it 1.5	0.72	2 Alignmer	nt of 220m pots	
June 2011	RP at 10σ; T1, T2 in reado	out 90	0.001		ss section + elas < 0.33 GeV ²	tic scattering
Aug/Sep 2011	RP at 5σ; T1, T2 in readou	it 90	beam l	ost Alignmer	nt of RPs	
18. Oct 2011	RP at 5σ; T1, T2 in readou	it 90		Several h	ours of data tak	ing;
RP position (V) [sigma]	trigger schema	trigger on	bunch	Run time [min]	Events	Integ.Lumi [ub ⁻¹]
6.5	RP_all_OR + T2 + BX	1950,200 2100, 220	2	64.9	2.4E+6	1.6
6.5	RP_V and $+T2 + BX$	all		13.4	5.8E+5	5.2
6.5	$RP_all_and + T2 + BX$	all		217.5	9.3E+6	77
5.5	$RP_all_and + T2 + BX$	all		50.7	1.9E+6	16
4.8	$RP_all_and + T2 + BX$	all		16.4	6.2E+5	4.9
		sun	า	363	1.5E+7	104

A special run: 1st run with the β^* = 90 m optics and RP insertion June 2011



Evolution with time : intensity, energy, β^*

Un-squeeze from injection optics $\beta^* = 11m \text{ to } 90m$ [Helmut Burkhardt, Andre Verdier] Request of TOTEM (2005)

Very robust optics with high precision

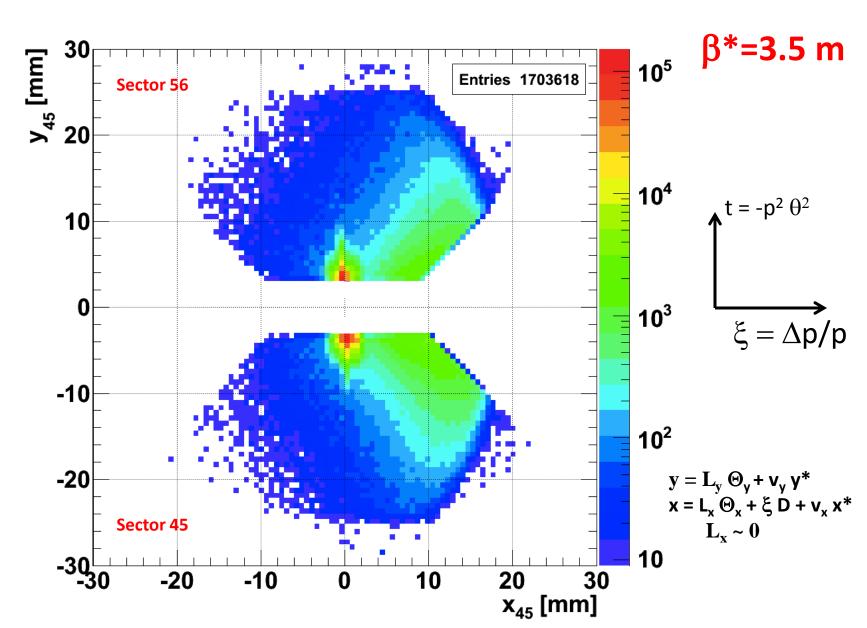
Fill 1902 Beam process SQUEEZE HIGHBETA-90M 3.5TeV IP1_IP5_LONG

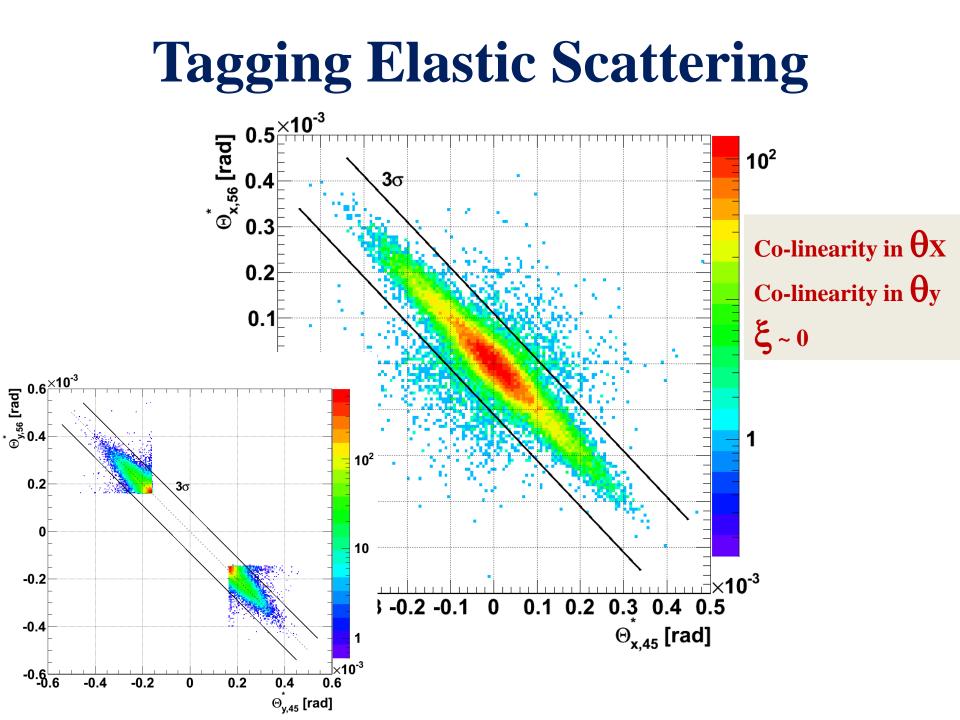
- Two bunches with 1 and 2 x 10^{10} protons / bunch Instantaneous luminosity: 8 x 10^{26} cm⁻² s⁻¹
- Integrated luminosity: 1.7 µb⁻¹
- Estimated pile-up: ~ 0.5 %
- Vertical Rôman Pots at 10 σ from beam center
- Trigger rate : ~ 50 Hz
- Recorded events in vertical Roman Pots: 66950

At the end of machine development 0.5 hours data taking by TOTEM

Runs & Data 2012

Joint data-taking TOTEM-CMS @ Vs = 8 TeV

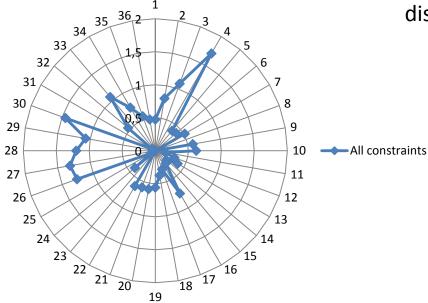

- Special optics β^* 90m (July 2012) : ~100 bunches
- Bi-directional exchange of triggers (via new TOTEM electrical trigger)
- TOTEM triggers on RP pp coincidences >>> full CMS readout
- CMS triggers on di-jets >>> TOTEM RPs readout for protons signature


~25 M events

[Follow-up with new b* = 1km optics and pPb ions runs]

PP ELASTIC SCATTERING DIFFERENTIAL CROSS-SECTION

"Raw Data" Oct'10 – Vertical RPs@7σ

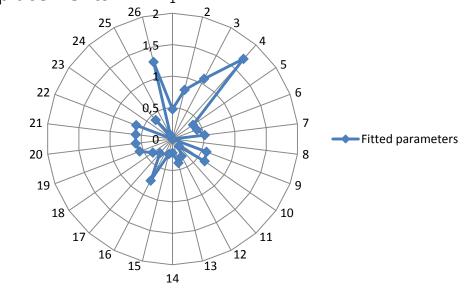

Prague's group strong involvement and contributions

Alignment **Normalization** (luminosity, trigger, daq) **Efficiency** (detector and tracking) Acceptance (geometry and beam) **Background subtraction Resolution unfolding**

Optics

<u>56</u>	<u>dLx/ds</u>	<u>Ly [m]</u>	ROT [mrad]
RP215	-0.311962	22.1464676	0.0432331
RP220	-0.311962	22.6191755	0.0396463
Δ RP215	-2.84%	+0.78%	
Δ RP220	-2.84%	+0.81%	

<u>45</u>	<u>dLx/ds</u>	<u>Ly [m]</u>	ROT [mrad]
RP215	-0.314508	20.3883272	0.0400268
RP220	-0.314508	20.6709463	0.0372828
Δ RP215	-4.51%	+10.19%	
Δ RP220	-4.51%	+10.79%	



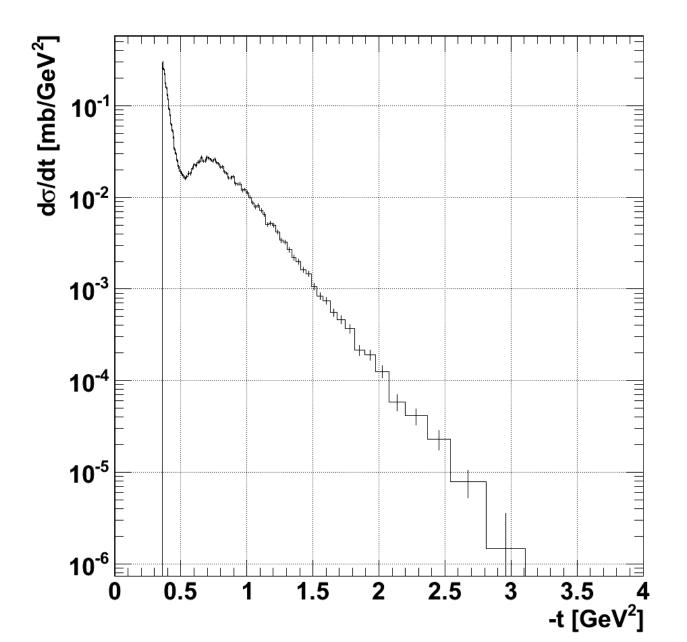
Strong correlations between fitted parameters

Principle Component Analysis (PCA) should ideally be applied. Anyway results checked with MAD-X.

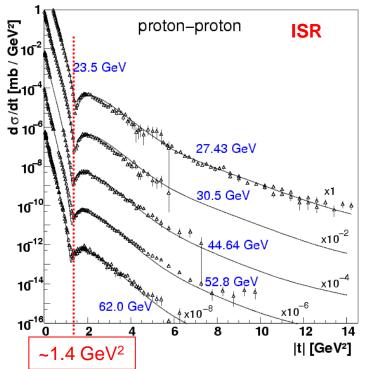
 χ^2 /NDF = 25.8/(36-26)=2.6 (would be lower if correlations are elmininated) Mean pull = 0.043 Pull RMS = 0.86

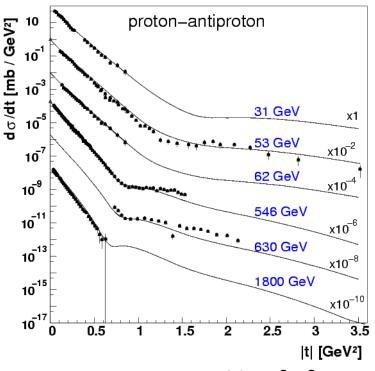
Full nonlinear fitting with harmonics and displacements. 1

Systematics

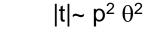

Analysis Corrections and Systematics				
Correction	Effect on	Functional form	Total values and integral	Details
				Luminosity $6.1 \text{nb}^{-1} \pm 4\%$
Normalization	$d\sigma/dt$	const(t)	$6.03 \mathrm{nb^{-1}} \pm 6\%$	Trigger eff. $99\% \pm 1\%$
		mult. factor		DAQ eff. $99\% \pm 1\%$
				$(11\pm2)\% _{ t =0.4{ m GeV}^2}$
Background	$d\sigma/dt$	Ae ^{-B t}	$(8 \pm 1)\%$	$(19 \pm 3)\% _{ t =0.5 { m GeV}^2}$
		mult. factor = $(1 - bckg.\%)$		$(0.8 \pm 0.3)\% _{ t =1.5 { m GeV}^2}$
Inefficiency	dσ/dt	const(t)	$(30 \pm 10)\%$	Detector 1%
		mult. factor = $(1 + \text{ineff.}\%)$	(50 ± 10) //	Tracking 29%
			$5.0 \pm 1\% _{ t =0.4 { m GeV}^2}$	$Y: \ 2.2 _{ t =0.36 GeV^2} \ 1.1 _{ t =0.5 GeV^2}$
Acceptance	$d\sigma/dt$	$\mathbf{A}(\mathbf{t} - \mathbf{B})^{-\mathbf{C}}$	$2.8 \pm 1\% _{ t =0.5 { m GeV}^2}$	
		mult. factor	$1.5 \pm 1\% _{ t =1.5 { m GeV}^2}$	$\phi: 4.5 _{ t =0.36 \text{GeV}^2} 1.5 _{ t =1.5 \text{GeV}^2}$
		Fourier(θ)	$0.55 [0.46 \rightarrow 0.57] _{ t =0.35 \text{GeV}^2}$	$0.55[0.46 \rightarrow 0.57] _{170\mu rad}$
Resolution	$t \rightarrow d\sigma/dt$	$\frac{\text{Beam divergence}}{\sqrt{2}} = 12 - 13 \ \mu \text{ rad}$	$0.47 [0.38 \rightarrow 0.51] _{ t =0.49 \text{GeV}^2}$	$0.47 [0.38 \rightarrow 0.51] _{190 \mu rad}$
unfolding	. / 00/0		$1.09 [1.05 \rightarrow 1.17] _{ t =0.77 \text{GeV}^2}$	$1.09[1.05 \rightarrow 1.17] _{240\mu rad}$
		mult. factor = $\frac{\text{unsmeared}}{\text{measured}}$	$0.91 [0.78 \rightarrow 1.01] _{ t =1.50 \text{GeV}^2}$	0.91 [0.78 \rightarrow 1.01] 350 μ rad
			$10\mu m \rightarrow \delta t = 2p/L_y\sqrt{ t }\delta y$	Track based alignment
Alignment	t	$\delta t = \operatorname{const} \delta \theta \sqrt{ \mathbf{t} }$	$\delta t/t = 0.6\% _{ t =0.4 { m GeV}^2}$	for 2 mechanically
			$\delta t/t = 0.3\% _{ t =1.5 \text{GeV}^2}$	constrained diagonals
		$t_x = f(k, \boldsymbol{\psi}, p); t_y = f(k, \boldsymbol{\psi}, p)$	$\Delta(dL_x/ds)=4\%$	$rac{\delta k}{k}=0.1\%$
Optics	t	k: magnet strength	$\Delta L_y = 6\%$	$\frac{\delta\psi}{\psi} = 1$ mrad
- pues		ψ : magnet rotation	$\Delta t = 10\%$	$\frac{\delta p}{p} = 10^{-3}$
		p: LHC beam momentum	$\frac{\delta t}{t} = 2\%$	

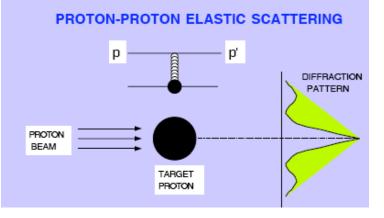
Statistical and Systematic uncertainties for the *t* and d\sigma/dt results

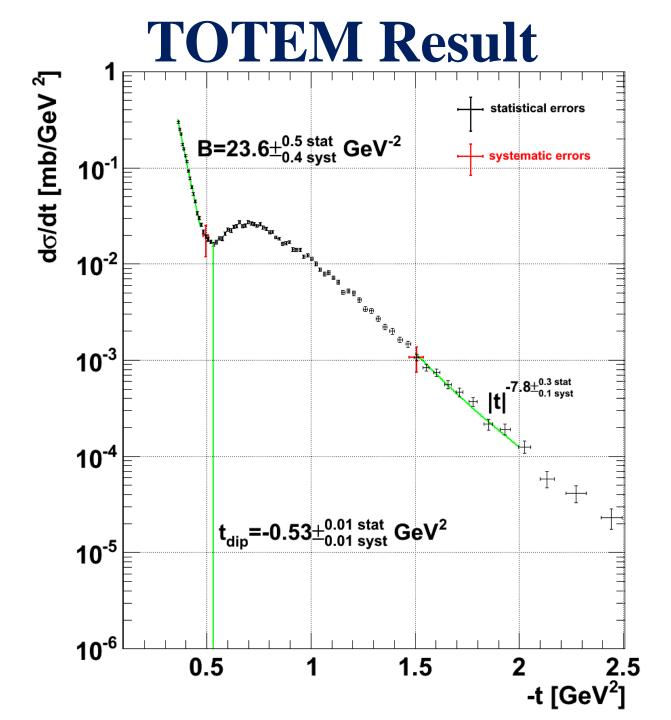

Table 3: Statistical and systematic errors on t and $d\sigma/dt$.

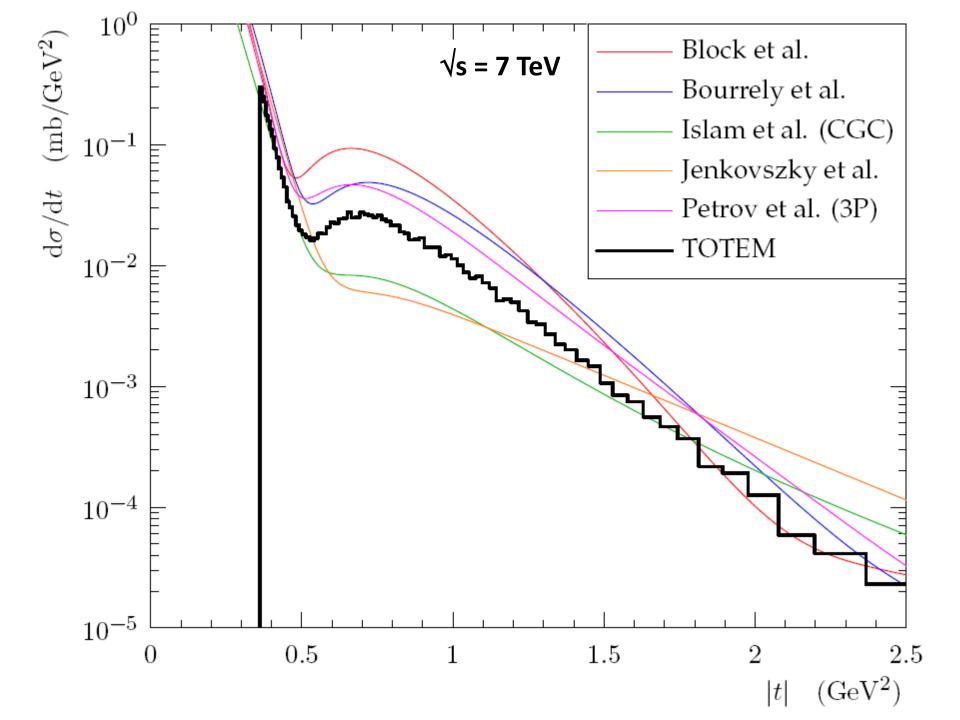

	$\delta t = \boldsymbol{\sigma}_{t}^{Stat}(t) \oplus \boldsymbol{\varepsilon}_{t}^{Syst}(t)$	$\delta(\mathrm{d}\sigma/\mathrm{d}t) = \sigma_{\mathrm{d}\sigma/\mathrm{d}t}^{Stat}(t) \oplus \varepsilon_{\mathrm{d}\sigma/\mathrm{d}t}^{Syst}(t)$
$ t = 0.4 \text{GeV}^2$	$\frac{\delta t}{t} = \pm 0.5\%^{Stat} \pm 2.6\%^{Syst}$	$\frac{\delta(\mathrm{d}\sigma/\mathrm{d}t)}{\mathrm{d}\sigma/\mathrm{d}t} = \pm 2.6\%^{Stat} + 25\%^{Syst}$
$ t = 0.5 \text{GeV}^2$	$\frac{\delta t}{t} = \pm 0.7\%^{Stat} \pm 2.5\%^{Syst}$	$\frac{\delta(\mathrm{d}\sigma/\mathrm{d}t)}{\mathrm{d}\sigma/\mathrm{d}t} = \pm 4.4\%^{Stat} + \frac{28}{-39}\%^{Syst}$
$ t = 1.5 \text{GeV}^2$	$\frac{\delta t}{t} = \pm 0.8\%^{Stat} \pm 2.3\%^{Syst}$	$\frac{\delta(\mathrm{d}\sigma/\mathrm{d}t)}{\mathrm{d}\sigma/\mathrm{d}t} = \pm 8.2\%^{Stat} + 27\%^{Syst}$

do/dt



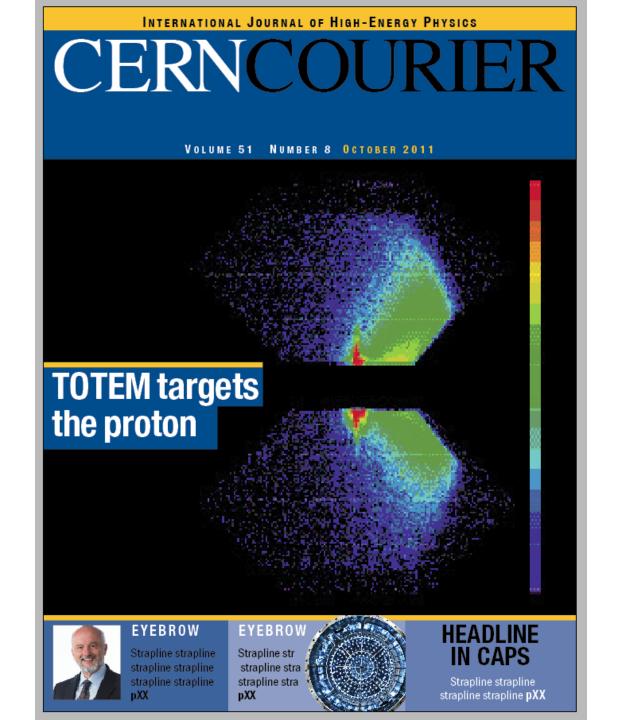

Elastic scattering – from ISR to Tevatron




Diffractive minimum: analogous to Fraunhofer diffraction:

- exponential slope B at low |t| increases
- minimum moves to lower |t| with increasing s
 - \rightarrow interaction region grows (as also seen from σ_{tot})
- depth of minimum changes
 → shape of proton profile changes
- depth of minimum differs between pp, p⁻p
 - \rightarrow different mix of processes

TOTEM vs Models comparison


	B (t=-0.4 GeV²)	t _{DIP}	t ^{-N} [1.5–2.0 GeV²]
	[GeV ⁻²]	[GeV ²]	[N]
Islam	19.9	0.65	5.0
Jenkovsky	20.1	0.72	4.2
Petrov	22.7	0.52	7.0
Bourrely	21.7	0.54	8.4
Block	24.4	0.48	10.4
ΤΟΤΕΜ	23.6 ± 0.5 ± 0.4	0.53 ± 0.01 ± 0.01	7.8 ± 0.3 ± 0.1

Proton-proton elastic scattering at the LHC energy of $\sqrt{s} = 7$ TeV

THE TOTEM COLLABORATION

G. ANTCHEV^(a), P. ASPELL⁸, I. ATANASSOV⁸ ^(a), V. AVATI⁸, J. BAECHLER⁸, V. BERARDI^{5b,5a}, M. BERRETTI^{7b}, M. BOZZO^{6b,6a}, E. BRÜCKEN^{3a,3b}, A. BUZZO^{6a}, F. S. CAFAGNA^{5a}, M. CALICCHIO^{5b,5a}, M. G. CATANESI^{5a}, C. COVAULT⁹, M. CSANÁD⁴ ^(b), T. CSÖRGÖ⁴, M. DEILE⁸, E. DIMOVASILI⁸, M. DOUBEK^{1b}, K. EGGERT⁹, V.EREMIN^(c), F. FERRO^{6a}, A. FIERGOLSKI^(d), F. GARCIA^{3a}, S. GIANI⁸, V. GRECO^{7b,8}, L. GRZANKA⁸ ^(e), J. HEINO^{3a}, T. HILDEN^{3a,3b}, M. JANDA^{1b}, J. KAŠPAR^{1a,8}, J. KOPAL^{1a,8}, V. KUNDRÁT^{1a}, K. KURVINEN^{3a}, S. LAMI^{7a}, G. LATINO^{7b}, R. LAUHAKANGAS^{3a}, T. LESZKO^(d), E. LIPPMAA², M. LOKAJÍČEK^{1a}, M. LO VETERE^{6b,6a}, F. LUCAS RODRÍGUEZ⁸, M. MACRÍ^{6a}, L. MAGALETTI^{5b,5a}, G. MAGAZZÙ^{7a}, A. MERCADANTE^{5b,5a}, S. MINUTOLI^{6a}, F. NEMES⁴ ^(b), H. NIEWIADOMSKI⁸, E. NOSCHIS⁸, T. NOVÁK⁴ ^(f), E. OLIVERI^{7b}, F. OLJEMARK^{3a,3b}, R. ORAVA^{3a,3b}, M. ORIUNNO⁸ ^(g), K. ÖSTERBERG^{3a,3b}, A.-L. PERROT⁸, P. PALAZZI^{7b}, E. PEDRESCHI^{7a}, J. PETÄJÄJÄRVI^{3a}, J. PROCHÁZKA^{1a}, M. QUINTO^{5a}, E. RADERMACHER⁸, E. RADICIONI^{5a}, F. RAVOTTI⁸, E. ROBUTTI^{6a}, L. ROPELEWSKI⁸, G. RUGGIERO⁸, H. SAARIKKO^{3a,3b}, A. SANTRONI^{6b,6a}, A. SCRIBANO^{7b}, G. SETTE^{7b,7a}, W. SNOEYS⁸, F. SPINELLA^{7a}, J. SZIKLAI⁴, C. TAYLOR⁹, N. TURINI^{7b}, V. VACEK^{1b}, M. VITEK^{1b}, J. WELTI^{3a,3b} and J. WHITMORE¹⁰

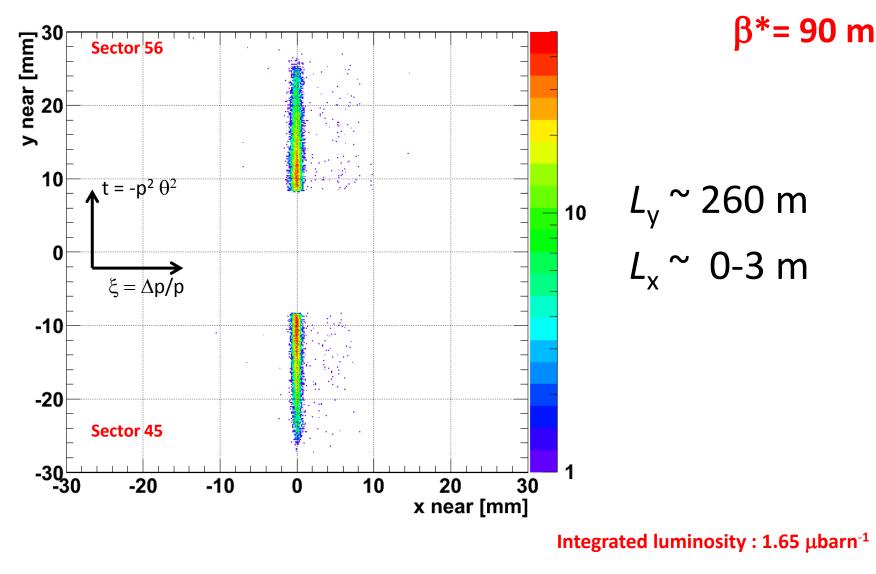
- ^{1a} Institute of Physics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic.
- ^{1b} Czech Technical University, Praha, Czech Republic.
- ² National Institute of Chemical Physics and Biophysics NICPB, Tallinn, Estonia.
- ^{3a} Helsinki Institute of Physics, Finland.
- ^{3b} Department of Physics, University of Helsinki, Finland.
- ⁴ MTA KFKI RMKI, Budapest, Hungary.
- ^{5a} INFN Sezione di Bari, Italy.
- ^{5b} Dipartimento Interateneo di Fisica di Bari, Italy.
- ^{6a} Sezione INFN, Genova, Italy.
- ^{6b} Università degli Studi di Genova, Italy.
- ^{7a} INFN Sezione di Pisa, Italy.
- ^{7b} Università degli Studi di Siena and Gruppo Collegato INFN di Siena, Italy.
- ⁸ CERN, Geneva, Switzerland.
- ⁹ Case Western Reserve University, Dept. of Physics, Cleveland, OH, USA.
- ¹⁰ Penn State University, Dept. of Physics, University Park, PA, USA.

TOTAL, ELASTIC, INELASTIC CROSS-SECTIONS (a) $\sqrt{s} = 7-8$ TeV

Measurements and Results a $\sqrt{s} = 7$ TeV

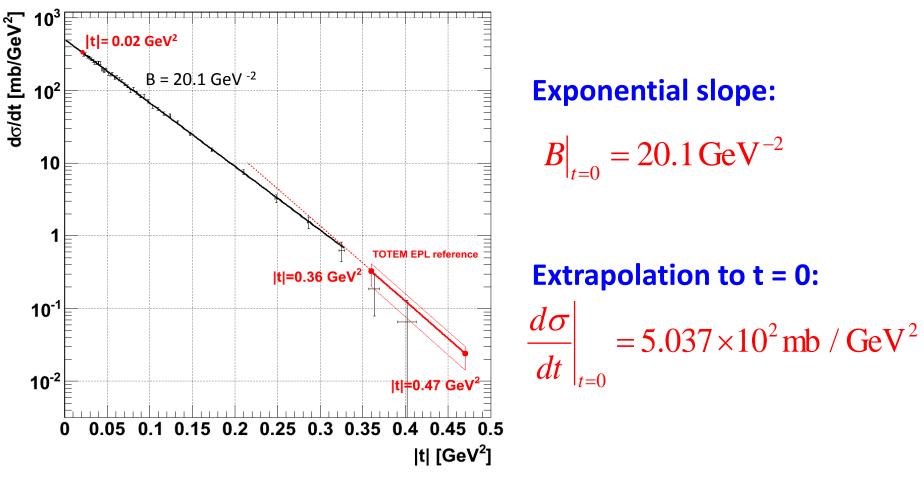
Cross-Section Formulae

Optical Theorem:


$$\sigma_{TOT}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$

Using luminosity from CMS: $\frac{d\sigma_{EL}}{dt} = \frac{1}{L} \cdot \frac{dN_{EL}}{dt}$; and ρ from COMPETE fit: $\rho = 0.14^{+0.01}_{-0.08}$

$$\sigma_{TOT} = \sqrt{19.20 \,\mathrm{mb}\,\mathrm{GeV}^2 \cdot \frac{d\sigma_{EL}}{dt}} \Big|_{t=0}$$


$$\sigma_{TOT} = \sigma_{EL} + \sigma_{INEL}$$

"Raw Data" Jun'11 – Vertical RPs@10σ

Inel. pile-up ~ 0.005 ev/bx

TOTEM: pp Elastic Cross-Section

Integral Elastic Cross-Section

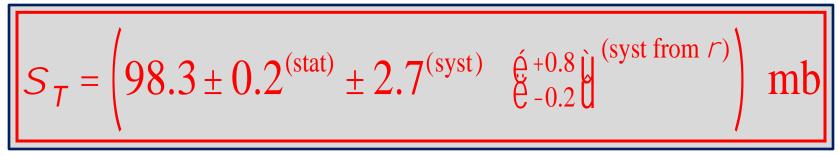
 $\sigma_{EL} = 8.3 \, \text{mb}^{(\text{extrapol.})} + 16.5 \, \text{mb}^{(\text{measured})} = 24.8 \, \text{mb}$

Systematics and Statistics

- $t: \pm [0.6:1.8]$ %^{syst optics} $\pm < 1$ %^{align.} $\pm [3.4:11.9]$ %^{stat (before unfolding)}
- $d\sigma/dt: \pm 4\%^{\text{syst lumin}}; \pm 1\%^{\text{syst (acc.+eff.+backg.+tag)}} \pm 0.7\%^{\text{syst unfold.}}$
- B: $\pm 1\%^{\text{stat}} \pm 1\%^{\text{syst from t}} \pm 0.7\%^{\text{syst from unfolding}}$
- $d\sigma/dt(t=0)$: ± 0.3%^{stat} ±0.3%^{syst (optics)} ±4%^{syst lumin} ±1%^{syst (acc.+eff.+backg.+tag)}
- $\int d\sigma/dt : \pm 4\%^{\text{syst lumin}} \pm 1\%^{\text{syst (acc.+eff.+backg.+tag)}} \pm 0.8\%^{\text{stat extrap.}}$
- σ TOT : (+0.8% -0.2%)^{syst $\rho \pm 0.2\%$ ^{stat} $\pm 2.7\%$ ^{syst} = (+2.8%-2.7%)^{syst} $\pm 0.2\%$ ^{stat}}
- $\sigma EL: \pm 5\%^{syst} \pm 0.8\%^{stat}$
- σ INEL : (+2.4%-1.8%)^{syst} ± 0.8%^{stat}

TOTEM: pp Total Cross-Section

- I


Elastic exponential slope:

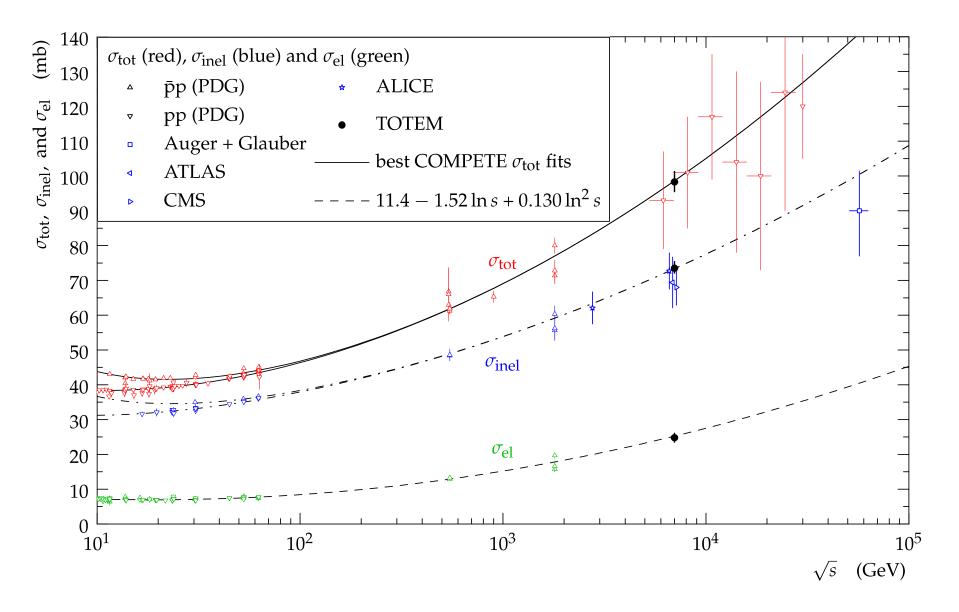
$$B_{t=0} = (20.1 \pm 0.2^{(stat)} \pm 0.3^{(syst)}) \text{ GeV}^{-2}$$

Elastic diff. cross-section at optical point:

$$\frac{dS_{el}}{dt}\Big|_{t=0} = (503.7 \pm 1.5^{(stat)} \pm 26.7^{(syst)}) \text{ mb / GeV}^2$$
Optical Theorem, $\rho = 0.14^{+0.01}_{-0.08}$

Total Cross-Section

TOTEM: pp Inelastic Cross-Section


$$\sigma_{\rm el} = \left(24.8 \pm 0.2^{(\rm stat)} \pm 1.2^{(\rm syst)}\right) \,\text{mb} \qquad S_{\tau} = \left(98.3 \pm 0.2^{(\rm stat)} \pm 2.7^{(\rm syst)} \,\left(\begin{smallmatrix} 6 + 0.8 \\ 0 - 0.2 \end{smallmatrix}\right)^{(\rm syst from } \Gamma\right) \,\text{mb}$$

Inelastic Cross-Section

$$\sigma_{inel} = \sigma_{tot} - \sigma_{el} = \left(73.5 \pm 0.6^{(\text{stat})} \begin{bmatrix} +1.8\\ -1.3 \end{bmatrix}^{(\text{syst})}\right) \text{ mb}$$

$$\begin{split} \sigma_{\text{inel}} & (\text{CMS}) &= (68.0 \pm 2.0^{(\text{syst})} \pm 2.4^{(\text{lumi})} \pm 4.0^{(\text{extrap})}) \text{ mb} \\ \sigma_{\text{inel}} & (\text{ATLAS}) = (69.4 \pm 2.4^{(\text{exp})} \pm 6.9^{(\text{extrap})}) \text{ mb} \\ \sigma_{\text{inel}} & (\text{ALICE}) &= (72.7 \pm 1.1^{(\text{mod})} \pm 5.1^{(\text{lumi})}) \text{ mb} \end{split}$$

Total, Elastic, Inelastic Cross-Section

A Letters Journal Exploring the Frontiers of Physics

OFFPRINT

First measurement of the total proton-proton cross-section at the LHC energy of $\sqrt{s} = 7$ TeV

THE TOTEM COLLABORATION (G. ANTCHEV et al.)

EPL, **96** (2011) 21002

Luminosity-independent and p-independent pp Total Cross-Sections @ 7 TeV

pp Cross-Sections @LHC: 4 Methods (& Luminosity calibration)


- 1. Low_L(CMS) + Elastic + Optical T.
 - depends on CMS luminosity for low-L bunches & elastic efficiencies & ρ
- 2. High_L(CMS) + Elastic + Optical T.
 - checks the CMS luminosity for high-L vs low-L bunches
- 3. High_L(CMS) + Elastic + Inelastic
 - minimizes dependence on elastic efficiencies and no dependence on ρ

4. (L-independent) + Elastic + Inelastic + Optical T.

eliminates dependence on luminosity

1. Low_L(CMS) + Elastic + Optical T.

June'11 data : RP 10 σ ; L: bunches 1-2·10¹⁰ p

• $\sigma_{TOT} = 98.3 \text{ mb} \pm [2.0(\text{lum}) \ 0.5(\text{syst}) \ _{0.15}^{0.8}(\rho)] \text{ mb}$

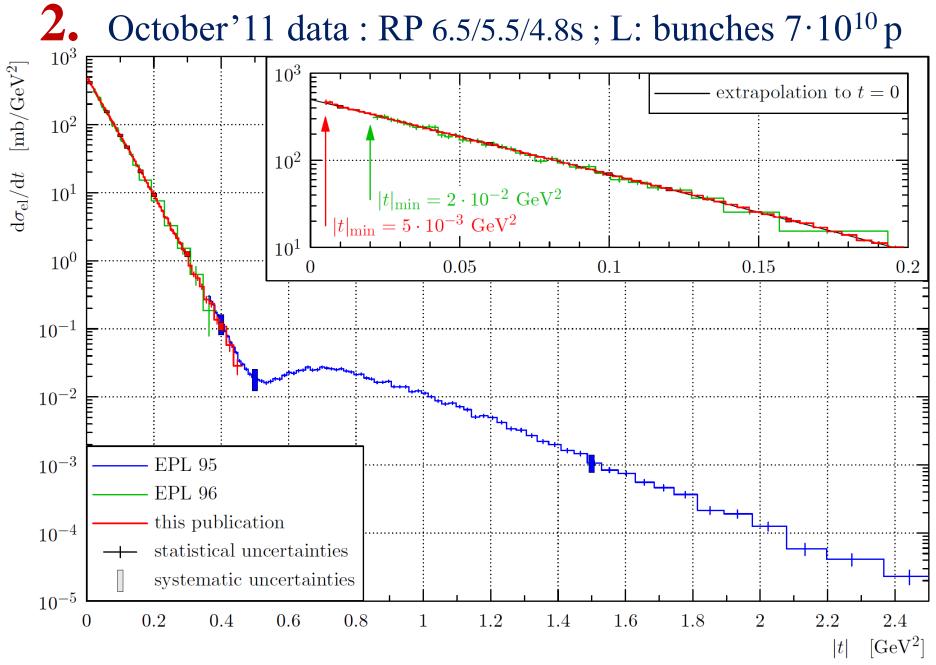
• $\sigma_{EL} = \int d\sigma_{EL}/dt = 24.8 \text{ mb}$

• $\sigma_{INEL} = \sigma_{TOT} - \sigma_{EL} = 73.5 \text{ mb}$

2. High_L(CMS) + Elastic + Optical T.

October'11 data : RP 6.5/5.5/4.8 σ ; L: bunches 7.10¹⁰ p

•
$$\sigma_{TOT}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$


• $\sigma_{TOT} = 98.6 \text{ mb} \pm [2.0(\text{lum}) \ 1.0(\text{syst}) \ _{0.15}^{0.8}(\rho)] \text{ mb}$

EP - 2012

- 23

• $\sigma_{EL} = \int d\sigma_{EL}/dt = 25.4 \pm 1.1 \text{ mb}$

• $\sigma_{INEL} = \sigma_{TOT} - \sigma_{EL} = 73.2 \pm 1.3 \text{ mb}$

 $|t_{min}| \approx 5 \cdot 10^{-3} \text{ GeV2} \rightarrow 91\%$ of cross-section measured (9% extrapolated) ; B = 19.9 ± 0.3 GeV⁻²

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Measurement of proton-proton elastic scattering and total cross-section at \sqrt{s} = 7 TeV

The TOTEM Collaboration

G. Antchev^a), P. Aspell⁸, I. Atanassov^{8,a}), V. Avati⁸, J. Baechler⁸), V. Berardi^{5b,5a}, M. Berretti^{7b}, E. Bossini^{7b}, M. Bozzo^{6b,6a}, P. Brogi^{7b}), E. Brücken^{3a,3b}, A. Buzzo^{6a}, F. S. Cafagna^{5a},
M. Calicchio^{5b,5a}), M. G. Catanesi^{5a}, C. Covault⁹), M. Csanád⁴), T. Csörg⁶⁴, M. Deile⁸, K. Eggert⁹), V. Eremin^b, R. Ferretti^{6a,6b}, F. Ferro^{6a}), A. Fiergolski^c), F. Garcia^{3a}, S. Giani⁸, V. Greco^{7b,8},
L. Grzanka^{8d}), J. Heino^{3a}, T. Hilden^{3a,3b}, R. A. Intonti^{5a}), J. Kašpar^{1a,8}), J. Kopal^{1a,8}), V. Kundrát^{1a}), K. Kurvinen^{3a}, S. Lami^{7a}), G. Latino^{7b}, R. Lauhakangas^{3a}), T. Leszko⁶, E. Lippmaa²), M. Lokajfček^{1a}), M. Lo Vetere^{6b,6a}, F. Lucas Rodríguez⁸, M. Macri^{6a}, T. Mäki^{3a},
A. Mercadante^{5b,5a}), N. Minafra⁸), S. Minutoli^{6a}, F. Nemes^{4,e}), H. Niewiadomski⁸, E. Oliveri^{7b},
F. Oljemark^{3a,3b}, R. Orava^{3a,3b}, M. Oriunno^{8,f}, K. Testrov^{7b}, E. Radermacher⁸), L. Ropelewski⁸,
G. Ruggiero⁸), H. Saarikko^{3a,3b}, V. Santroni^{6b,6a}, A. Scribano^{7b}, J. Smajek⁸, W. Snoeys⁸,
J. Sziklai⁴, C. Tavlor⁹), N. Turini^{7b}), V. Vacek^{1b}), M. Vitek^{1b}, J. Welti^{3a,3b}, ad J. Whitmore¹⁰

^{1a}Institute of Physics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic.
 ^{1b}Czech Technical University, Praha, Czech Republic.
 ²National Institute of Chemical Physics and Biophysics NICPB, Tallinn, Estonia.
 ^{3a}Helsinki Institute of Physics, Finland.
 ^{3b}Department of Physics, University of Helsinki, Finland.
 ⁴MTA Wigner Research Center, RMKI, Budapest, Hungary.
 ^{5a}INFN Sezione di Bari, Italy.
 ^{5b}Dipartimento Interateneo di Fisica di Bari, Italy.
 ^{6a}Sezione INFN, Genova, Italy.
 ^{6b}Università degli Studi di Genova, Italy.
 ^{7b}Università degli Studi di Gruppo Collegato INFN di Siena, Italy.
 ⁸CERN, Geneva, Switzerland.
 ⁹Case Western Reserve University, Dept. of Physics, Cleveland, OH, USA.
 ¹⁰Penn State University, Dept. of Physics, University Park, PA, USA.

- ^dInstitute of Nuclear Physics, Polish Academy of Science, Cracow, Poland.
- ^eDepartment of Atomic Physics, ELTE University, Hungary.
- fSLAC National Accelerator Laboratory, Stanford CA, USA.

^aINRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria.

^bIoffe Physical - Technical Institute of Russian Academy of Sciences.

^cWarsaw University of Technology, Poland.

3. High_L(CMS) + Elastic + Inelastic

October'11 data : RP 6.5/5.5/4.8 σ ; L: bunches 7.10¹⁰ p

p-independent

•
$$\sigma_{EL} = \int d\sigma_{EL}/dt = 25.4 \pm 1.1 \text{ mb}$$

•
$$\sigma_{INEL} = L^{-1} \cdot N_{INEL} = 73.7 \pm 3.4 \text{ mb}$$

• $\sigma_{TOT} = \sigma_{EL} + \sigma_{INEL}$

HCC Keport – 1414... [preprint upcoming] Mar ,12

Inelastic Cross Section

direct T1 and T2 measurement

Inelastic events in T2: classification

tracks in both hemispheres

non-diffractive minimum bias double diffraction

tracks in a single hemisphere mainly single diffraction $M_{x} > 3.4 \text{ GeV/}c^{2}$

Corrections to the T2 visible events

- Trigger Efficiency: 2.3 % (measured from zero bias data with respect to track multiplicity)
- Track reconstruction efficiency: (based on MC tuned with data)
- Beam-gas background: 0.54 % (measured with non colliding bunch data)
- Pile-up (μ =0.03): 1.5 %

(contribution measured from zero bias data)

= 69.7 ± 0.1 ^{stat} ± 0.7 ^{syst} ± 2.8 ^{lumi} mb σ_{inelastic}, T2 visible

tracks **T2**

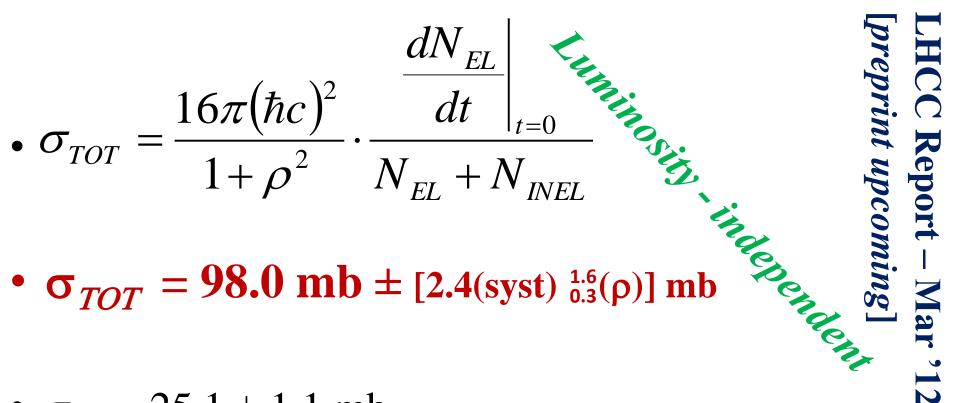
1%

 $\sigma_{\text{inelastic, T2 visible}} \implies \sigma_{\text{inelastic}}$

Missing inelastic cross-section

- Events visible in T1 but not in T2: 2.0 % (estimated from zero bias data)
- Rapidity gap in T2 : 0.57 %
 (estimated from T1 gap probability transferred to T2)
- Central Diffraction: T1 & T2 empty : 0.54 % (based on MC, correction max ~0.25 ×σ_{cD}, quoted in systematic error)
- Low Mass Diffraction :

(Several models studied, correction based on **QGSJET-II-4**, imposing observed 2hemisphere/1hemisphere event ratio and the effect of 'secondaries')


- constrained by the Total cross-section measurement : upper limit = 6.3 mb at 95% C.L. for η ≥ 6.5 , i.e. M_{sp} ≤ 3.4 GeV
- will be measured with a single proton trigger, large β^* optics and clean beam conds.

$\sigma_{\text{inelastic}} = 73.7 \pm 0.1 \text{ stat} \pm 1.7 \text{ syst} \pm 2.9 \text{ lumi mb}$

3.7 % + 2 % syst

4. Elastic + Inelastic + Optical T.

October'11 data : RP 6.5/5.5/4.8 σ ; L: bunches 7.10¹⁰ p

- $\sigma_{EL} = 25.1 \pm 1.1 \text{ mb}$
- $\sigma_{INEL} = 72.9 \pm 1.5 \text{ mb}$

pp Total Cross-Sections (a)
$$\sqrt{s}=7$$
TeV
Published EPL96
1. $\sigma_{TOT} = 98.3 \text{ mb} \pm \frac{2.2}{2.0} \text{ mb}$ $\sigma_{TOT}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$
PH-EP-2012-239

2.
$$\sigma_{TOT} = 98.6 \text{ mb} \pm \frac{2.4}{2.2} \text{ mb}$$

$$\sigma_{TOT}^{2} = \frac{16\pi(\hbar c)^{2}}{1+\rho^{2}} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$

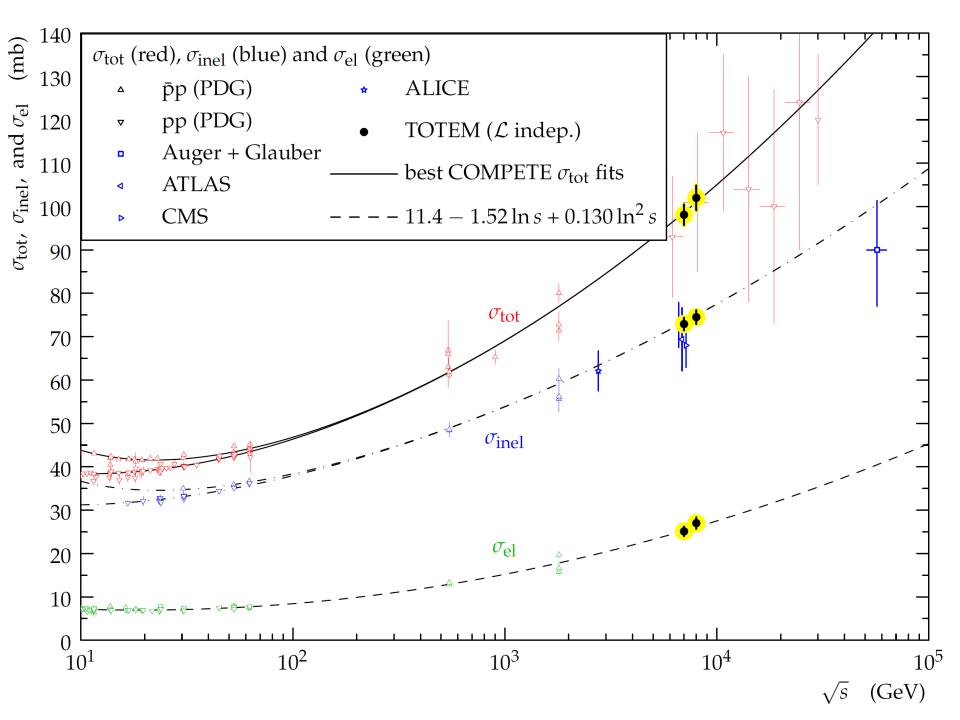
LHCC Mar '12 ρ -independent **3.** $\sigma_{TOT} = 99.1 \text{ mb} \pm 4.4 \text{ mb}$ $\sigma_{TOT} = \sigma_{EL} + \sigma_{INEL}$

LHCC Mar '12 *L*-independent **4.** $\sigma_{TOT} = 98.0 \text{ mb} \pm \frac{2.9}{2.4} \text{ mb}$ $\sigma_{TOT} = \frac{16\pi(\hbar c)^2}{1+\rho^2} \cdot \frac{\frac{dN_{EL}}{dt}}{N_{EL}+N_{INEL}}$

Measurements and Results (a) $\sqrt{s} = 8$ TeV

Luminosity-independent pp Cross-Sections (a) $\sqrt{s} = 8$ TeV

July 2012 $\sqrt{s} = 8 \text{ TeV} \ \beta^* = 90 \text{m}$


Two data samples triggered by TOTEM RPs pp coincidences

Luminosity-independent

Elastic, Inelastic, Total Cross-Sections:

DS	$\sigma_{\rm tot}$ (mb)	$\sigma_{\rm el}$ (mb)	$\sigma_{\rm inel}$ (mb)
2	102 ± 2.8	27.1 ± 1.3	74.9 ± 1.6
3	101 ± 2.8	26.9 ± 1.3	74.2 ± 1.6

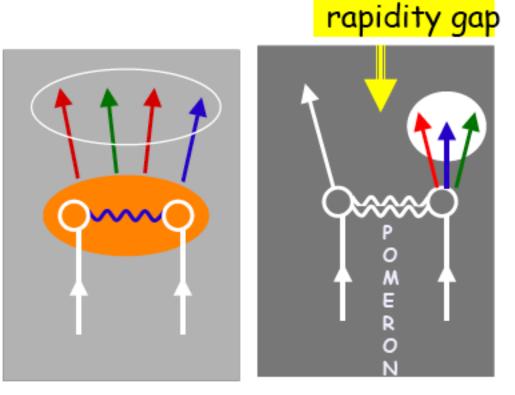
Key roles of Prague's group in the analysisInternal refereeing completed – 1^{st} public release of resultsEditorial Process started [preprint upcoming]

PERSPECTIVES ON FORWARD AND DIFFRACTIVE PHYSICS

pp Interactions

Non-diffractive

Colour exchange

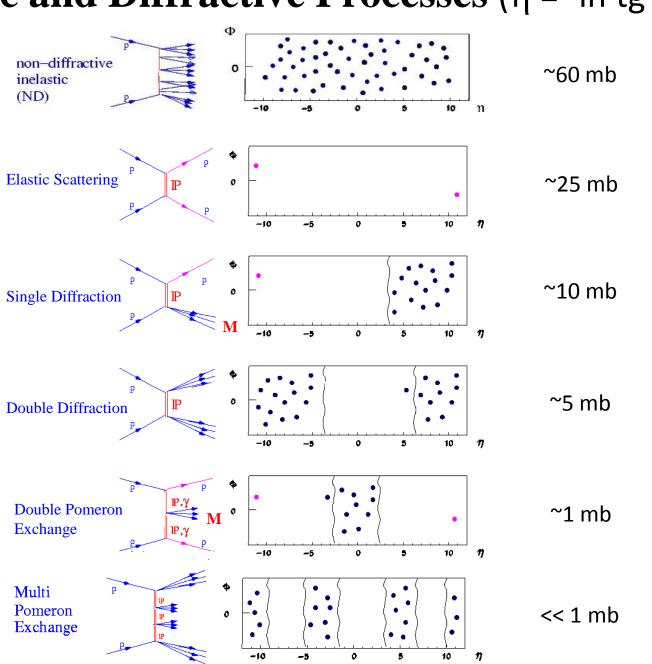

dN / d $\Delta \eta$ = exp (- $\Delta \eta$)

Diffractive

Colourless exchange with vacuum quantum numbers

dN / d $\Delta \eta$ = const

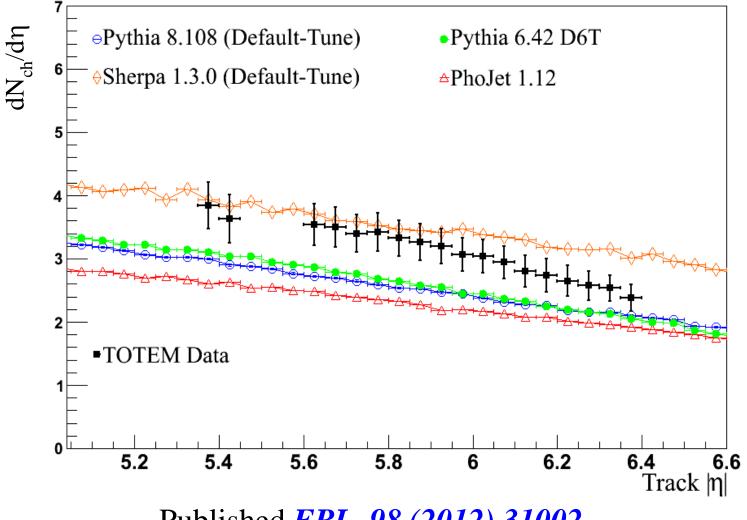
Incident hadrons acquire colour and break apart



Incident hadrons retain their quantum numbers remaining colourless

GOAL: understand the QCD nature of the diffractive exchange

Inelastic and Diffractive Processes ($\eta = -\ln tg \theta/2$)


In case of hard interactions there should be jets, which fall in the same rapidity intervals All the drawings show soft interactions.

A hard scale + hadrons which remain intact in the scattering process Diffractive scattering is a unique laboratory of confinement & QCD:

Measure σ (M,ξ,t)

$dN_{ch}/d\eta$ measured in T2 : results

Published EPL, 98 (2012) 31002

May 2012

EPL, **98** (2012) 31002 doi: 10.1209/0295-5075/98/31002

www.epljournal.org

Measurement of the forward charged-particle pseudorapidity density in pp collisions at $\sqrt{s} = 7$ TeV with the TOTEM experiment

THE TOTEM COLLABORATION

G. ANTCHEV^(a), P. ASPELL⁸, I. ATANASSOV^{8(a)}, V. AVATI⁸, J. BAECHLER⁸, V. BERARDI^{5b,5a}, M. BERRETTI^{7b}, E. BOSSINI^{7b}, M. BOZZO^{6b,6a}, P. BROGI^{7b}, E. BRÜCKEN^{3a,3b}, A. BUZZO^{6a}, F. S. CAFAGNA^{5a}, M. CALICCHIO^{5b,5a}, M. G. CATANESI^{5a}, C. COVAULT⁹, M. CSANÁD⁴, T. CSÖRGŐ⁴, M. DEILE⁸, K. EGGERT⁹, V. EREMIN^(b), R. FERRETTI^{6a,6b}, F. FERRO^{6a}, A. FIERGOLSKI^(c), F. GARCIA^{3a}, S. GIANI⁸, V. GRECO^{7b,8}, L. GRZANKA^{8(d)}, J. HEINO^{3a}, T. HILDEN^{3a,3b}, M. R. INTONTI^{5a}, J. KAŠPAR^{1a,8}, J. KOPAL^{1a,8}, V. KUNDRÁT^{1a}, K. KURVINEN^{3a}, S. LAMI^{7a}, G. LATINO^{7b}, R. LAUHAKANGAS^{3a}, T. LESZKO^(c), E. LIPPMAA², M. LOKAJÍČEK^{1a}, M. LO VETERE^{6b,6a}, F. LUCAS RODRÍGUEZ⁸, M. MACRÍ^{6a}, L. MAGALETTI^{5b,5a}, T. MÄKI^{3a}, A. MERCADANTE^{5b,5a}, N. MINAFRA⁸, S. MINUTOLI^{6a}, F. NEMES^{4(e)}, H. NIEWIADOMSKI⁸, E. OLIVERI^{7b}, F. OLJEMARK^{3a,3b}, R. ORAVA^{3a,3b}, M. ORIUNNO^{8(f)}, K. ÖSTERBERG^{3a,3b}, P. PALAZZI^{7b}, J. PROCHÁZKA^{1a}, M. QUINTO^{5a}, E. RADERMACHER⁸, E. RADICIONI^{5a}, F. RAVOTTI⁸, E. ROBUTTI^{6a}, L. ROPELEWSKI⁸, G. RUGGIERO⁸, H. SAARIKKO^{3a,3b}, A. SANTRONI^{6b,6a}, A. SCRIBANO^{7b}, W. SNOEYS⁸, J. SZIKLAI⁴, C. TAYLOR⁹, N. TURINI^{7b}, V. VACEK^{1b}, M. VITEK^{1b}, J. WELTI^{3a,3b} and J. WHITMORE¹⁰

^{1a} Institute of Physics of the Academy of Sciences of the Czech Republic - Praha, Czech Republic, EU

^{1b} Czech Technical University - Praha, Czech Republic, EU

² National Institute of Chemical Physics and Biophysics NICPB - Tallinn, Estonia, EU

^{3a}Helsinki Institute of Physics - Helsinki, Finland, EU

^{3b}Department of Physics, University of Helsinki - Helsinki, Finland, EU

⁴ MTA Wigner Research Center, RMKI - Budapest, Hungary, EU

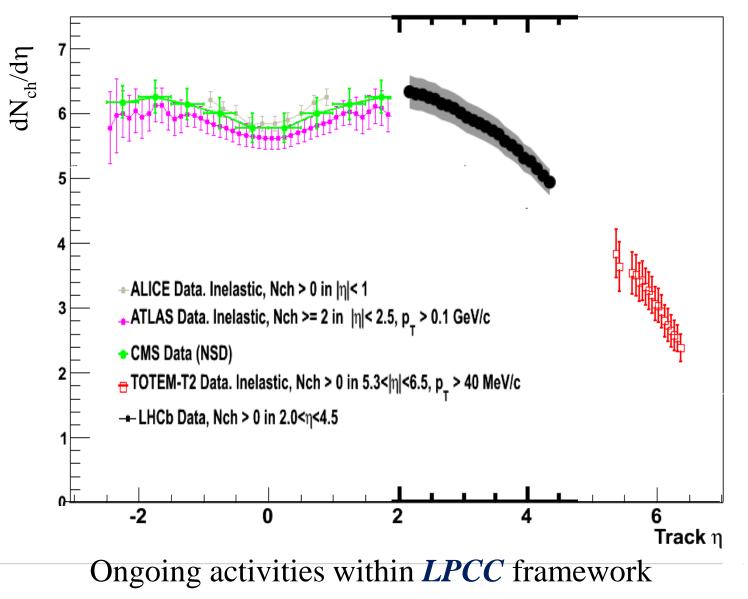
^{5a}INFN Sezione di Bari - Bari, Italy, EU

^{5b}Dipartimento Interateneo di Fisica di Bari - Bari, Italy, EU

^{6a}Sezione INFN di Genova - Genova, Italy, EU

⁶^b Università degli Studi di Genova - Genova, Italy, EU

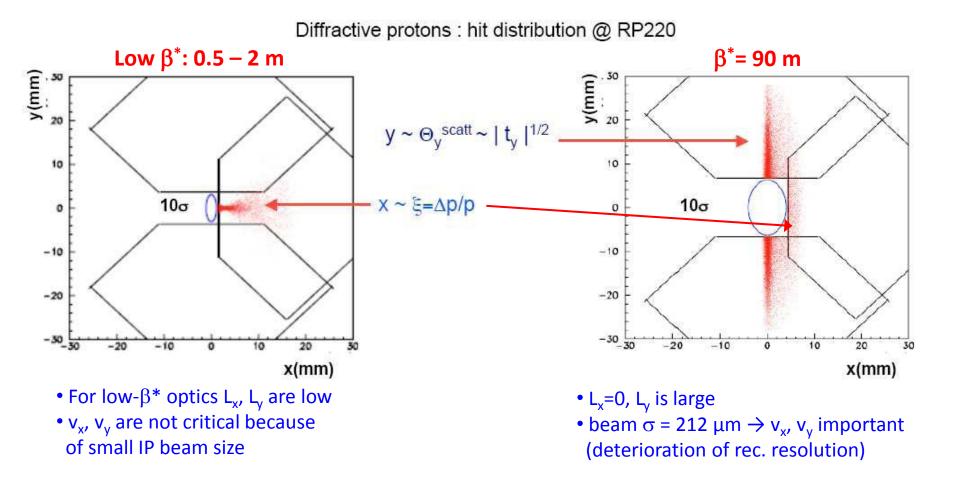
^{7a}INFN Sezione di Pisa - Pisa, Italy, EU


⁷^b Università degli Studi di Siena and Gruppo Collegato INFN di Siena - Siena, Italy, EU

⁸ CERN - Geneva, Switzerland

⁹ Case Western Reserve University, Department of Physics - Cleveland, OH, USA

¹⁰ Penn State University, Department of Physics - University Park, PA, USA

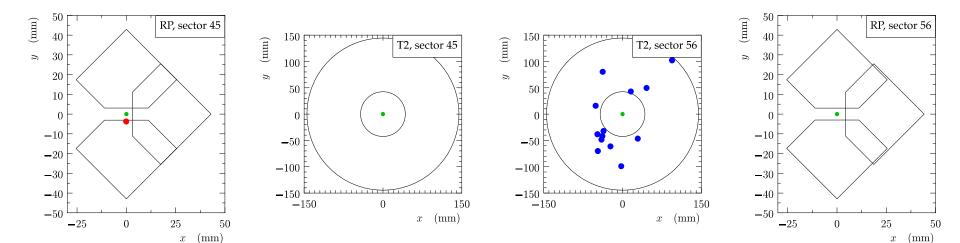

$dN_{ch}/d\eta$ combined with other LHC exp.

Diffractive forward protons @ RPs


$$y(s) = v_y(s) \cdot y^* + L_y(s) \cdot \Theta_y^*$$

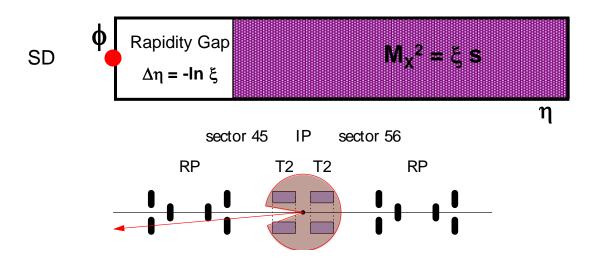
$$x(s) = v_x(s) \cdot x^* + L_x(s) \cdot \Theta_x^* + \xi \cdot D(s)^*$$

Dispersion shifts diffractive protons in the horizontal direction

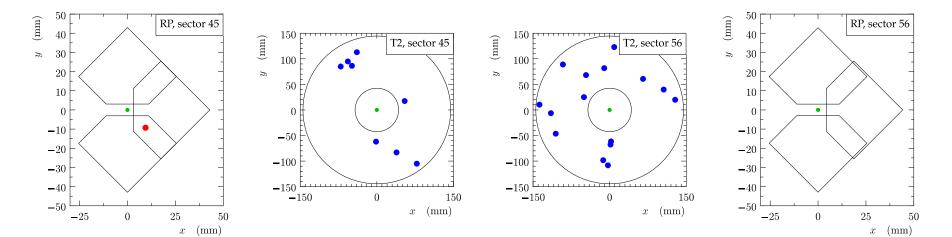


Single diffraction low ξ

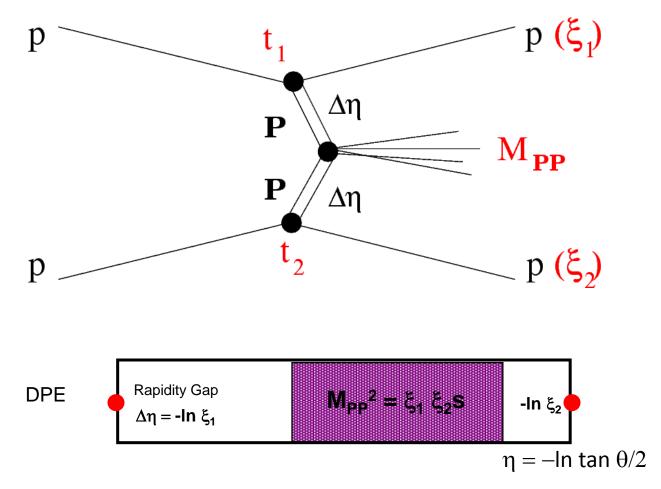
Correlation between leading proton and forward detector T2



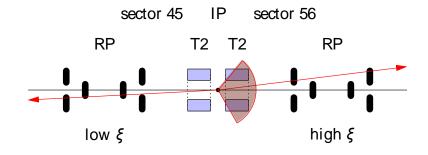
run: 37280003, event: 3000

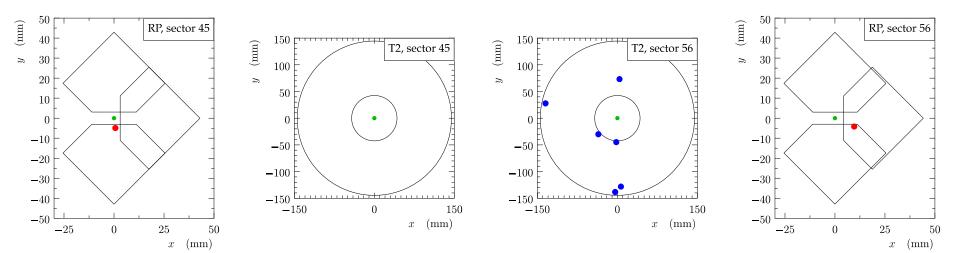


Single diffraction large ξ

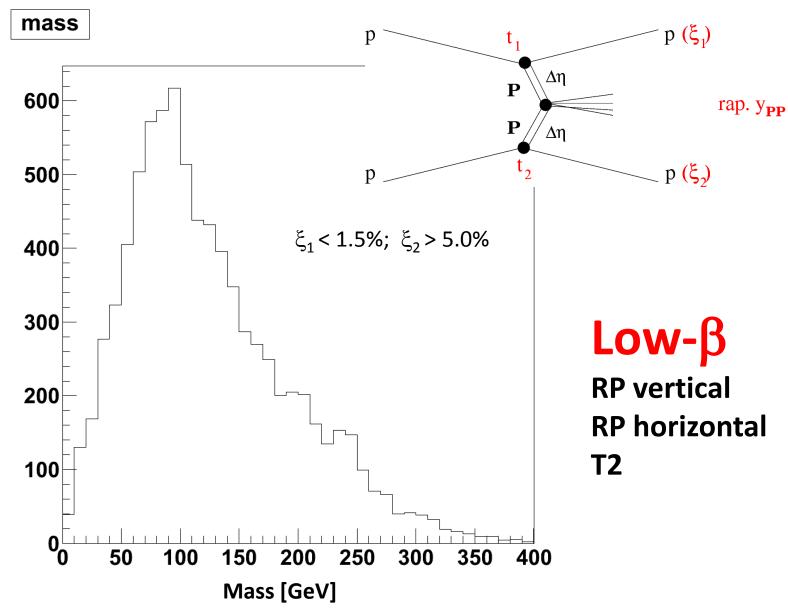

correlation between leading proton and forward detector T2

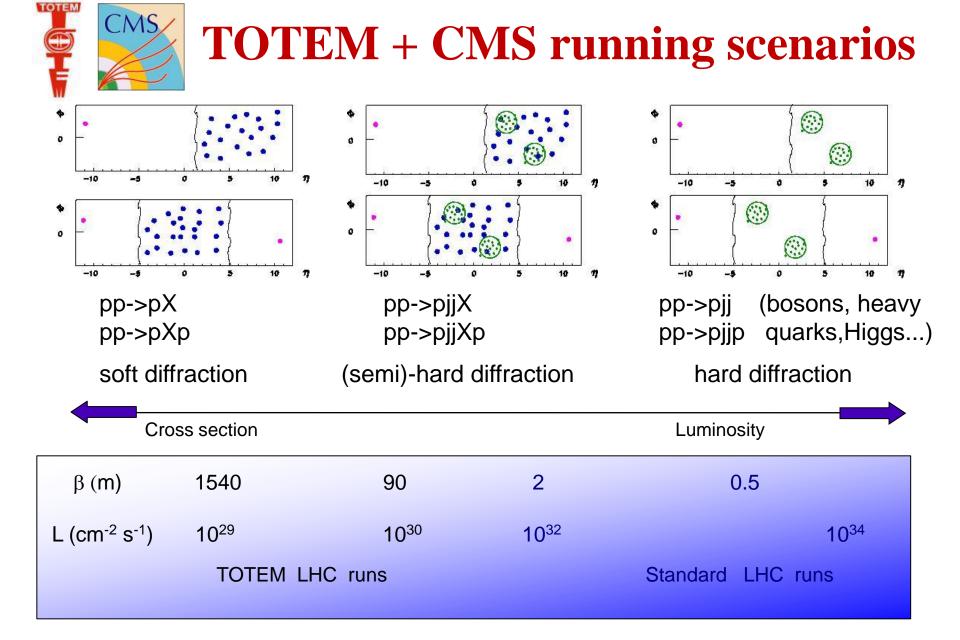
run: 37280006, event: 9522


Double Pomeron Exchange (DPE)

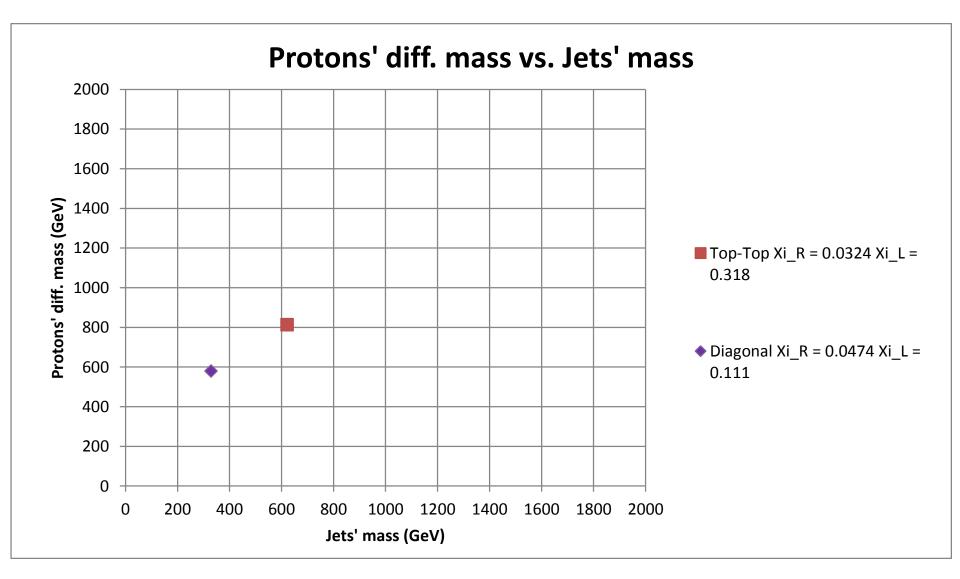

Use the LHC as a Pomeron-Pomeron (Gluon - Gluon) Collider

Double Pomeron Exchange (DPE)


correlation between leading protons and forward detector T2



run: 37220007, event: 9904


DPE Mass Reconstruction "proof of concept"

DPE Dijets Mass Reconstruction "proof of concept"

