Hunting for the Higgs Boson and more at the LHC

he musical trops & minute

Committee for the Collaboration of the Czech Republic with CERN and the Czech Physical Society

With recent results from ATLAS and CMS

Peter Jenni (CERN) 25th October 2012

the K.H.C case truck to state suscillate to common his unsulat equivitance is particle physics

Realize enfronted territories

it is there is so more eminate little two more the form on the the first request of the more life to estil commones of grave with

From former of your in traced at see to the your off to get with one trade every type canady with some with there are a foregoed of al floren weether and man 0,0

the two long of any many of the transformed of the

Drawing by Sergio Cittolin

alice

The Large Hadron Collider project is a global scientific adventure, including the accelerator, the worldwide computing grid and the experiments, initiated more than 20 years ago

Prague, 25-10-2012 P Jenni (CERN)

LHC Roadmap

It is a great privilege and pleasure to present now first physics results

History of the Universe

The Standard Model of Particle Physics

- (i) Constituents of matter: quarks and leptons
- (ii) Four fundamental forces (described by quantum field theories, except gravitation)
- (iii) The Higgs field (problem of mass)

The mass mystery could be solved with the 'EW symmetry breaking mechanism' which predicts the existence of a new elementary particle, the 'Higgs' particle (theory 1964: R. Brout and F. Englert; P.W. Higgs; G.S. Guralnik, C.R. Hagen and T.W.B. Kibble)

A most basic question is why particles (and matter) have masses (and so different masses)

Supersymmetry (SUSY)

(Julius Wess and Bruno Zumino, 1974)

Establishes a symmetry between fermions (matter) and bosons (forces):

- Each particle p with spin s has a SUSY partner p with spin s -1/2

- Examples

q (s=1/2) \rightarrow \tilde{q} (s=0) squark g (s=1) \rightarrow g (s=1/2) gluino

Maybe a new world?

Our known world...

Motivation:

- Unification (fermions-bosons, matter-forces)
- Solves some deep problems of the Standard Model

Dark Matter in the Universe

Astronomers found that most of the matter in the Universe must be invisible Dark Matter

rague, 25-10

Jenni (C

Vera Rubin ~ 1970

'Supersymmetric' particles ?

Unification of Forces

How the LHC came to be ...

(see a nice article by Chris Llewellyn Smith in Nature 448, p281)

Some early key dates

- 1977 The community talked about the LEP project, and it was already mentioned that a new tunnel could also house a hadron collider in the far future
- 1981 LEP was approved with a large and long (27 km) tunnel

CENTRAL AND F/B TOTAL CENTRAL TRANS ENERGY 87.2 GEV WEIGHTS EM 1.00, H1 1.00, H2 1.00, FB 1.00 MAXIMUM CELL TRANSV ENERGY 35.0 GEV

A very early $Z \rightarrow$ ee online display from one of the detectors (UA2) 10

Prague, 25-10-2012 P Jenni (CERN)

ATLAS was borne with the Letter of Intent (LoI), submitted on 1st October 1992, 20 years ago

21-27 March 1984

Prague, 25-10-2012 P Jenni (CERN)

1991 December CERN Council: 'LHC is the right machine for advance of the subject and the future of CERN' (thanks to the great push by DG C Rubbia)

1993 December proposal of LHC with commissioning in 2002

1994 June Council:

Staged construction was proposed, but some countries could not yet agree, so the Council session vote was suspended until

16 December 1994 Council:

(Two-stage) construction of LHC was approved

The two-stage approval of LHC was understood to be modified in case sufficient CERN non-member state contributions would become available

A lot of LHC campaigns and negotiations took place in the years 1995 - 1997, including also the experiments

Japan, Russia, India, Canada and the USA were agreeing in that phase to contribute to the LHC

(Israel contributed all along to the full CERN programme and LHC)

1997

December Council approved finally the single-stage 14 TeV LHC for completion in 2005

Signature of the US-CERN agreement in December 1997: R Eisenstein (NSF), C Llewellyn Smith (CERN DG), M Krebs (DOE)

The first picture on the Web in 1992 !

The LHC machine

ALICE

Lake of Geneva

LHCb

The Large Hadron Collider is a 27 km long collider ring housed in a tunnel about 100 m underground near Geneva

ATLAS

Prague, 25-10-2012 P Jenni (CERN)

LHC Roadmap

CMS

The first cyclotron and the Berkeley one

Prague, 25-10-2012 P Jenni (CERN)

The most challenging components are the 1232 high-tech superconducting dipole magnets

Magnetic field: 8.4 T Operation temperature: 1.9 K Dipole current: 11700 A Stored energy: 7 MJ Dipole weight: 34 tons 7600 km of Nb-Ti superconducting cable

Prague, 25-10-2012 P Jenni (CERN) LHC Construction Project Leader Lyndon Evans

48

The particle beams are accelerated by superconducting Radio-Frequency (RF) cavities

Note: The acceleration is not such a big issue in pp colliders (unlike in e^+e^- colliders), because of the ~ 1/m⁴ behaviour of the synchrotron radiation energy losses [~ E^4_{beam}/Rm^4]

Synchrotron radiation loss Peak accelerating voltage 6.7 keV/turn 16 MV/beam

3 GeV/turn 3600 MV/beam Special quadrupole magnets ('Inner Triplets') are focussing the particle beams to reach highest densities ('Iuminosity') at their interaction point in the centre of the experiments

CERN's particle accelerator chain

Collisions at LHC

General purpose detectors

Specialized detectors

Plus smaller local earldoms LHCf (point-1) TOTEM (point-5) Moedal (point-8)

SWITZERLAND

1

kingley of cass

FRANCE

CMS 3000 Physicists 184 Institutions 38 countries 550 MCHF

ALICE 1000 Physicists 105 Institutions 30 countries 150 MCHF

Prague, 25-10-2012 P Jenni (CERN)

The LHC World of CERN

Prety of LACE

calatinate of ATLAS

C:

canton of ALKE

LHC Roadm

LHCb 730 Physicists 54 Institutions 15 countries 75 MCHF

ATLAS 3000 Physicists 176 Institutions 38 countries 550 MCHF

ALICE (January 2008)

III

2

Exploded View of CMS

An Example of an Engineering Challenge: CMS Solenoid

CMS solenoid:	
Magnetic length	12.5 m
Diameter	6 m
Magnetic field	4 T
Nominal current	20 kA
Stored energy	2.7 GJ
Tested at full current in Summer 2006	

CMS before closure 2008

ATLAS Collaboration

(Status June 2012)

38 Countries

176 Institutions

3000 Scientific participants total

(1000 Students)

ATLAS enjoys a longstanding and very fruitful partnership with the Czech groups since the very first days

Adelaide, Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku, IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, HU Berlin, Bern, Birmingham, UAN Bogota, Bologna, Bonn, Boston, Brandeis, Brasil Cluster, Bratislava/SAS Kosice, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, CERN, Chinese Cluster, Chicago, Chile, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, AGH UST Cracow, IFJ PAN Cracow, SMU Dallas, UT Dallas, DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Edinburgh, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, Göttingen, LPSC Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima IT, Indiana, Innsbruck, Iowa SU, Iowa, UC Irvine, Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Kyushu, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QMW London, RHBNC London, UC London, Lund, UA Madrid, Mainz, Manchester, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, RUPHE Morocco, FIAN Moscow, ITEP Moscow, MEPhI Moscow, MSU Moscow, LMU Munich, MPI Munich, Nagasaki IAS, Nagoya, Naples, New Mexico, New York, Nijmegen, Northern Illinois, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Olomouc, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, NPI Petersburg, Pisa, Pittsburgh, CAS Prague, **CU Prague, TU Prague**, IHEP Protvino, Rome I, Rome II, Rome III, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, SLAC, South Africa, Stockholm, KTH Stockholm, Stony Brook, Sydney, Sussex, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Tokyo Tech, Toronto, TRIUMF, Tsukuba, Tufts, Udine/ICTP, Uppsala, UI Urbana, Valencia, UBC Vancouver, Victoria, Warwick, Waseda, Washington, Weizmann Rehovot, FH Wiener Neustadt, Wisconsin, Wuppertal, Würzburg, Yale, Yerevan

Age distribution of the ATLAS population

ATLAS Overview Week

A meeting of the world-wide ATLAS Collaboration building a detector for the near future of particle physics at the Large Hadron Collider at CERN. 13–19 September 2003, Prague, Czech Republic

ATLAS has a long-standing, excellent, cooperation with the Czech teams, since the official start of the project in 1992

An important milestone was the ATLAS Collaboration meeting in Prague 2003, just before we started installing the detector

Prague, 25-10-2012 P Jenni (CERN)

n

5

Professor J Niederle (1939-2010) opening the ATLAS Overview Week in Prague

The Underground **Cavern at Point-1 for** the ATLAS Detector

Length	= 55 m
Width	= 32 m
Height	= 35 m

Prague, 25-10-2012 P Jenni (CERN)

Hector Berlioz, "Les Troyens", opera in five acts Valencia, Palau de les Arts Reina Sofia, 31 October -12 November 2009

Prague, 25-10-2012 P Jenni (CERN)
Tile Calorimeter

EBC pre-assembly on the surface, April 2003

Rupert Leitner Project Leader 2001-2004

Prague, 25-10-2012 P Jenni (CERN)

Tile Calorimeter sub-module construction in Prague 1999

Czech Deputy Prime Minister Petr Mares visiting the Tile Calorimeter pre-assembly (Dec 2003)

Prague, 2 P Jenni (C

Transport of part of the Barrel Tile Calorimeter to the experimental area Point-1 (Sep 2004)

EBA assembly 24 May 2006

64/19

0

Finoitisog

6EINV

OFINV

127

#9INV

OFINT

AGES MONTAGE ANNECY 14 77

ATLAS Supplier Awa

ATLAS Supplier Awar for ON Semiconductor

Supplier of Silicon Sensors for the ATLAS Pixel Detector

Design of the sensor

The ON Semiconductor Czech Republic foundry of Roznov, Czech Republic has supplied a total of 515 production sensor wafers containing a total of 1177 production sensor tiles within the technical specifications for the ATLAS Pixel Detector. These sensors were delivered on schedule and within budget.

The requirements of the ATLAS Pixel Detector were very demanding, It is the first large-scale silican detector to combine such a complex secon layout (46000 individual pixel implants arranged as a two-dimensional array within a 10 cm² active area) with externe radiation requirements (reliable operation to a total does of 10¹⁵ cm² active area) with externe radiation commercial implementation or several new sensor technologies. The high-does ensor requirement led to the first sensors is based of 10¹⁵ cm² active areas with externe the to the first technique (diffusion oxygenation at very high temperature to embed significant Oxygen in the Silicon lattice and improve the depletion behavior of the material atter high radiation does. In addition, the need to achieve to measure of the silicon second to one of the silicon second to one of the observation of the traterial diffusion doese. The silicon based on the silicon distribution of the traterial diffusion doese in the silicon base of the observation of the material atter high radiation doese. In addition, the need to achieve to measurements.

ON Semiconductor, in its Roznov foundry, has produced wafers satisfying all of these requirements with excellent yield. As there are three sensor tiles per wafer, and the full wafer must be burned bandler this widel is excertised to coarted the several the several to be and the full wafer. The Prague groups (and Czech industry) are also important collaborators on the semiconductor tracking system (SCT and Pixels)

ATLAS Supplier Award ceremony for 'On Semiconductor' (ex 'Tesla') in 2007

(Also 'Skoda Hute' received the same award in 2004 for their shielding work)

Prague, 25-10-2012 P Jenni (CERN)

ATLAS 16 Feb 2007

Radiation shielding parts (CTU and Skoda Hute)

ATLAS Roman Pots (ALFA)

There is also a strong involvement of Czech colleagues and industry in ALFA since the Palacky University in Olomouc joined ATLAS in 2008

Prague, 25-10-2012 P Jenni (CERN)

The joy in the ATLAS Control Room when the first LHC beam collided on November 23rd, 2009....

Prague, 25-10-2012 P. Jenni (CERN)

First collisions at the LHC end of November 2009 with beams at the injection energy of 450 GeV

Prague, 25-10-2012 P Jenni (CERN)

Heavy Ion Running in 2011

Prague, 25-10-2012 P Jenni (CERN)

During the short Winter shut-down on 8 March 2012: Visit of the Deputy Minister Ivan Wilhelm in ATLAS

Prague, 25-10-2012 P Jenni (CERN)

Peak Luminosity per Fill [10 33 cm $^{-2}$ s⁻¹] ATLAS Online Luminosity 10 <u>√s</u> = 8 TeV **Current LHC Operation:** LHC Stable Beams ٠ Peak Lumi: 7.73×10^{33} cm⁻² s⁻¹ 8 1380 bunches per beam 6 50 ns bunch spacing 2 1.5 x 10¹¹ protons / bunch 0 01/04

^{02/05 03/06 05/07 05/08 06/09 07/10 08/1} Day in 2012

22-Oct-2012 14:54:48	Fill #: 3208	Energy: 4	1000 GeV	I(B1): 2.02	2e+ 14	I(B2): 2.07e+14	
Experiment Status	ATL/ PHYS	AS <mark>CS</mark>	ALICE PHYSICS	C PHY	MS <mark>(SICS</mark>	LHCb PHYSICS	
Instantaneous Lumi [(ub.s)^-	1] 5394	1.2	5.976	52	53.7	398.0	
BRAN Luminosity [(ub.s)^–1] 5351	1.2	3.943	46	18.0	240.2	
Fill Luminosity (nb)^–1	2833	0.6	30.5	248	354.2	1727.9	
BKGD 1	0.72	4	0.834	2.3	375	0.911	
BKGD 2	104.6	42	0.000	3.8	854	27.452	
BKGD 3	1.85	5	9.490	18	.651	1.334	
LHCb VELO Position	ap: -0.0 mm	ST.	ABLE BEAMS		TOTEM:	STANDBY	
Performance over the last 24 Hrs						Updated: 1	.4:54:47
2E14- Atisept 1.5E14- 1E14- 5E13- 17:00 20:		02:00	05:00	08:00	11:00	14:00	4000 3000 3000 2000 1000 EPerddyddiad 1000 0
1/P1) 1/P2) Energy	25.00	02.00	03.00	50.00	11.00	1.00	

But the LHC (at 8 TeV) and ATLAS performances are even more fantastic this year

ε (Physics) = ε (Data-Taking) x ε (Data-Quality) Today: ε (Physics) ~ 88%

Data Quality ATLAS p-p run: April-Sept. 2012

Inner Tracker		Calori	Calorimeters		Muon Spectrometer				Magnets	
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
100	99.3	99.5	97.0	99.6	99.9	99.8	99.9	99.9	99.7	99.2

All good for physics: 93.7%

Prace Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at $V_{s=8}$ TeV between April 4th and September 17th (in %) – corresponding to 14.0 fb⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

Excellent LHC performance is a (nice) challenge for the experiment:

- Trigger
- Pile-up
- Maintain accuracy of the the measurements in this environment

Inner Detector for a Z \rightarrow µµ event with 25 primary vertices

Prague, 25-10-2012 P Jenni (CERN)

The Worldwide LHC Computing Grid (wLCG)

LLCC Warldwida LHC Computing Grid

Tier-0 (CERN):
Data recording
Initial data reconstruction
Data distribution

Tier-1 (11 centres):

Permanent storage
Re-processing
Analysis
Simulation

Tier-2 (federations of ~130 centres):

- Simulation
- End-user analysis

Prague, 25-10-2012 P Jenni (CERN)

The large ATLAS Prague Tier-2 works very efficiently

Computing Grid Delivers Physics

ATLAS jobs per day across all Tier-1 & Tier-2s

- First-pass reconstruction at Tier-0 within ~2 days
- Calibration good for physics analysis on Grid within ~1 week

The high quality of the WLCG computing system allows LHC experiments to show results from data taken just few weeks before

Prague, 25-10-2012 P Jenni (CERN)

First Physics Highlights

The European Physical Journal volume 72 · number 3 · march · 201 Particles and Fields D Springer Physical REVIEW

ATLAS and CMS have already published together close to 400 papers in scientific journals (and many more as public conference notes...)

It is obviously not possible to cover all these results...

No attempt is made to show in a democratic way always CMS and ATLAS results, but often ATLAS examples are given that represent typically results from both!

Note that all public results from CMS and ATLAS are available at: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u> https://twiki.cern.ch/twiki/bin/view/AtlasPublic

> Prague, 25-10-2012 P Jenni (CERN)

LHC Roadmap

Published by American Physical Society...

Physics Highlights:

General event properties

Heavy flavour physics

Standard Model physics including QCD jets

Higgs searches

Searches for SUSY

Examples of searches for 'exotic' new physics

Prague, 25-10-2012 P Jenni (CERN)

General Event Properties and Resonances

CMS

CMS Experiment at the LHC, CERN

Data recorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST) Run / Event 139779 / 4994190

(c) Copyright CERN, 2010. For the benefit of the CMS Collaboration.

Prague, 25-10-2012 P Jenni (CERN)

Charged hadron multiplicities at the three different \sqrt{s}

Average charged particle density for the central η region (pp and pp)

Prague, 25-10-2012 P Jenni (CERN)

LHC Roadmap

57

P Jenni (CERN)

Data corresponding to ~40 pb⁻¹ collected → re-discovery of the Standard Model

The di-muon spectrum recalls a long period of particle physics: Well known quark-antiquark resonances (bound states) appear "online" Prague, 25-10-2012 LHC Roadmap

Z and W production

Phys Rev D85 (2012) 072004

can be extracted essentially background-free)

Prague, 25-10-2012 P Jenni (CERN)

W transverse mass

 $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\nu}(1 - \cos(\phi^{\ell} - \phi^{\nu}))}$

Missing transverse energy from the W $\rightarrow \mu + \nu$ decays

ATLAS-CONF-2011-041

m_T [GeV]

W cross section measurement with e and μ

Prague, 25-10-2012 P Jenni (CERN)

LHC Roadmap

62

Jet physics

One of the most spectacular dijet events: $M_{ii} \sim 4 \text{ TeV}$

Prague, 25-10-2012 P Jenni (CERN)

Prague, 25-10 P Jenni (CERN)

Very detailed jet measurements are now available from LHC that can be compared with QCD calculations ...

Example: The inclusive di-jet cross sections as a function of the di-jet mass for various rapidity separations

The data are spanning jets over a large phase space:

- 20 GeV < p_T < 2 TeV - ΙηΙ < 4.4

(y* = 0.5 $I\eta_1 - \eta_2 I$)

W + jet(s) production

Both an interesting QCD measurement as well as a dominant background to many searches

Prague, 25-10-2012 P Jenni (CERN)

Top measurements

- Complete set of ingredients to investigate production of ttbar, which is the next step in verifying the SM at the LHC:
 - e, μ , E_T^{miss} , jets, b-tag
- Assume all tops decay to Wb: event topology then depends on the W decays:
 - one lepton (e or μ), E_T^{miss}, jjbb (37.9%)
 - di-lepton (ee, μμ or eμ), E_T^{miss}, bb (6.46%)

- topology W t W v M
- Data-driven methods to control QCD and W+jets backgrounds

tt candidate event

e + μ + 2 jets (b-tagged) +ETmiss

Run 166466 Event 26227945 Time 2010-10-07 22:16:39 UTC

 μ^+

WZ $\rightarrow ev\mu\mu$ Candidate

MET

Prague, 25-10-2012 P Jenni (CERN)

LHC Roadmap

μ

72
A summary of Standard Model measurements

The excellent performance in measuring Standard Model physics gives confidence for the readiness of the two experiments to search for New Physics

We are in the year of the Dragon...

Candidate for a 124.5 GeV mass $H \rightarrow \mu\mu$ ee event in ATLAS

... but it will also be remembered as the one of the Higgs Boson !

Prague, 25-10-2012 P Jenni (CERN)

Search for the boson (H) of the EW symmetry breaking

SM H boson production cross sections times observable decay branching ratios at 7 TeV

ATLAS $H \rightarrow ZZ^{(*)} \rightarrow 4I$ (4e, 4µ, 2e2µ)

- **Q** Rare process, small cross section: $\sigma \sim 2-5$ fb
- □ However: pure: S/B ~ 1
- **4** leptons: $p_T^{1,2,3,4} > 20, 20, 7, 7 \text{ GeV}; m_{12} = m_z \pm 15 \text{ GeV}$
- Main background: ZZ^(*) (irreducible)
 In addition: Zbb, Z+jets, tt with two leptons from b-quarks or jets

ATLAS $H \rightarrow \gamma \gamma$

- Small cross-section: σ ~ 40 fb
- Expected S/B ~ 0.02
- □ Simple final state: two high- p_T isolated photons: $E_T(\gamma_1, \gamma_2) > 40, 25$ GeV
- **D** Main background: $\gamma\gamma$ continuum (irreducible) and fake γ from γ j and jj events (reducible)

Analysis is done separately in 10 subcategories with different resolutions and backgrounds, then statistically combined with a likelihood method

LHC Roadmap

CMS Higgs result example and summary

Phys. Lett. B 716 (2012) 30

http://www.elsevier.com/locate/physletb

F Englert and P Higgs CERN, 4th July 2012

Properties, as far as known with the limited statistics...

Searches Beyond the Standard Model (only very few examples out of many...)

Prague, 25-10-2012 P Jenni (CERN)

In practice SUSY searches at LHC are rather complicated

• Complex (and model-dependent) squark/gluino cascades

- Focus on signatures covering large classes of models while strongly rejecting SM background
 - large missing E_T
 - High transverse momentum jets
 - Leptons
 - Perform separate analyses with and without lepton veto (0-lepton / 1-lepton / 2-leptons)
 - **B-jets:** to enhance sensitivity to third-generation squarks
 - Photons: typically for models with the gravitino as LSP

Prague, 25-10-2012 P Jenni (CERN)

Meff = Etmiss + Σ pT(jets)

Analyses re-optimized and updated with full 2011 Luminosity

- 0-lepton + 2-6 jets + high MET (based on Et-miss+jet triggers)
- 0-lepton + 6-9 (multi-)jets + MET (based on multi-jet triggers)
- 1-lepton + 3,4 jets + high MET (based on lepton triggers)

P Jenni (CERN)

Interpretation of the results

Consider phenomenological MSSM models containing only squarks of 1st and 2nd generation, gluino and light neutralinos

Expected production cross-sections at LHC

Summary of five dedicated searches for top squark pair production for theoretically preferred models with relatively light 3rd generation squarks

ATLAS SUSY limits

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: SUSY 2012)

	MSUGRA/CMSSM : 0 lep + i's + E	L=5.8 fb ⁻¹ , 8 TeV (ATLAS-CONF-2012-109)	1.50 TeV			
Jes	MSUGRA/CMSSM : 1 lep + j's + ET miss	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 TeV q = q mass			
NC	Pheno model : 0 lep + j's + $E_{T miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV \tilde{q} mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{r}^{\circ})$ $Ldt = (1.00 - 5.8) \text{ fb}^{\circ}$			
Sea	Pheno model : 0 lep + i's + $E_{T miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV g mass ($m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{z}^0$ $s = 7, 8 \text{ TeV}$		
ē	Gluino med, $\tilde{\chi}^{\pm}$ ($\tilde{a} \rightarrow q \bar{q} \tilde{\chi}^{\pm}$) : 1 lep + i's + E_{π}	1 [ep + i's + E_{\pm}] L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-041] 900 GeV \tilde{Q} mass $(m(\chi^0) < 200 \text{ GeV}, m(\chi^{\pm}) = \frac{1}{2}(m(\chi^0))$				
ISI	$GMSB: 2 lep (OS) + j's + E_T miss$	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	1.24 TeV g mass (ta	$h\beta < 15$ ATLAS		
5	GMSB : 1-2 τ + 0-1 lep + j's + E	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-112]	1.20 TeV \tilde{q} mass $(\tan \beta > 20)$ Preliminary			
1	$GGM: \gamma\gamma + E^{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.07 TeV $\tilde{\mathbf{Q}}$ mass $(m(\chi^{D}) > 50 \text{ GeV})$			
	$\tilde{q} \rightarrow b \bar{b} \tilde{\tau}^{0}$ (virtual b) : 0 lep + 1/2 b-i's + F_{π}	L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	900 GeV 0 mass (m(x)) <	300 GeV)		
irks tad	$\tilde{a} \rightarrow b h \tilde{x}$ (virtual \tilde{b}): 0 lep + 3 b-i's + E	L=4.7 fb ⁻¹ , 7 TeV [1207.4686] 1.02 TeV Q mass (m(χ^0) < 400 GeV)				
	$\tilde{q} \rightarrow b \tilde{b} \tilde{\chi}$ (real b): 0 lep + 3 b-i's + E ₋	L=4.7 fb ⁻¹ , 7 TeV [1207.4686] 1.00 TeV \tilde{q} mass $(m(\chi)) = 60$ GeV)				
tiai Tiai	$\tilde{q} \rightarrow t \bar{t} \tilde{x}^{2}$ (virtual \tilde{t}): 1 lep + 1/2 b-i's + E_{-}	$L=2.1 \text{ fb}^{-1}.7 \text{ TeV } [1203.6193]$ 710 GeV $\tilde{\mathbf{q}}$ mass $(m(\tau^{-1}) < 150 \text{ GeV})$				
ner.	$\tilde{\alpha} \rightarrow t \bar{t} \bar{v}$ (virtual t): 2 len (SS) + i's + E	L=5.8 (b ⁻¹ , 8 TeV (ATLAS-CONF-2012-105) 850 GeV a mass (m(7)) < 300 GeV)				
e l	$q \rightarrow t \bar{t} \bar{z}$ (virtual \bar{t}): 3 len + i's + E	$L=4.7 \text{ tb}^{-1}$, 7 TeV [ATLAS-CONF-2012-108] 760 GeV \tilde{Q} (mass (any $m(\tau_1^{-1}) < m(\tilde{q}))$				
a a	$\tilde{\alpha} \rightarrow t \tilde{t} \tilde{v}$ (virtual \tilde{t}): 0 lep + multi-i's + E_{-}	$I = 5.8 \text{ fb}^{-1} \text{ 8 TeV [ATL AS-CONE-2012-103]}$ 100 TeV $\tilde{Q} \text{ mass} (m(m_{\chi_1}) < 300 \text{ GeV})$				
20	\tilde{a} $t\bar{t}z$ (virtual \tilde{t}): 0 len + 3 b is + E	$L = 3.6 \text{ fb}^{-1}$ ($m(\chi_1) < 300 \text{ GeV}$) $L = 4.7 \text{ (b)}^{-1}$ ($T = V (1207 \text{ 46861})$ $Q = 0.000 \text{ feV}$ ($m(\chi_1) < 300 \text{ GeV}$)				
	$\tilde{\alpha}$ $t\tilde{\gamma}$ (real t): 0 lep + 3 b is + E	1 =4.7 fb ⁻¹ , 7 TeV [1207.4686]	820 GeV $\tilde{\mathbf{q}}$ mass $(m(\overline{\mathbf{r}}) = \theta)$	(GeV)		
	bb b $\rightarrow b\overline{y}$: 0 lep + 2-b-jets + E	1 =4.7 fb ⁻¹ . 7 TeV [ATLAS-CONE-2012-106]	480 GeV b mass $(m(\pi^0) \le 150 \text{ GeV})$,		
squarks duction	bb, b ₁ $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}$	1 =4.7 fb ⁻¹ , 7 TeV [ATLAS-CONE-2012-108]	380 GeV $\tilde{\mathbf{q}}$ mass $(m(\bar{x}_1^+) = 2m(\bar{x}_2^0))$			
	\widetilde{tf} (very light) $\widetilde{t} \rightarrow \mathrm{b}\widetilde{v}^{\pm}$: 2 lep + <i>F</i> .	L=4.7 tb ⁻¹ , 7 TeV [CONF-2012-059] 135 GeV \tilde{t} mass $(m(\tau^{0}) = 45 \text{ GeV})$				
	$\widetilde{\mathrm{ff}}$ (light), $\widetilde{\mathrm{f}} \rightarrow \mathrm{b} \widetilde{\mathrm{v}}^{\pm}$: 1/2 lep + b-iet + E.	$L=4.7$ (b ⁻¹ , 7 TeV ICONF-2012-070) 120-173 GeV t mass (m($\tau^{-})$) = 45 GeV)				
- 2	tt (heavy) $t_{-}tz^{0}$: 0 lep + b-jet + E	$L=4.7 \text{ (b}^{-1.7 \text{ TeV} [1208, 1447]} = 380-465 \text{ GeV} \text{ tmass } (m(\tau^{-1})=0) \text{ Very similar limits}$				
ge c	$t_{T,miss}$	$(=4.7 \text{ fb}^{-1} \text{ 7 TeV} \text{ (CONF-2012-073)} $ $(=4.7 \text{ fb}^{-1} \text{ 7 TeV} \text{ (CONF-2012-073)} $ $(=3.7 \text{ fb}^{-1} \text{ 7 TeV} \text{ (CONF-2012-073)} $				
ira lire	$t_{T,miss}$	$l = 4.7 \text{ fb}^{-1}$ 7 TeV [CONE-2012-071]	298-305 GeV \tilde{t} mass $(m(\bar{x}^0) = 0)$	come from CIVIS		
." C	$ff (GMSB) : Z(\rightarrow II) + b - iet + F$	$l = 2.1 \text{ fb}^{-1}$ 7 TeV [1204 6736]	310 GeV T mass $(115 \le m/2^{-0}) \le 230$ GeV)			
	$\frac{1}{1} \int \frac{1}{1} \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \frac{1}{1} \frac{1}$	/ =4.7 fb ⁻¹ .7 TeV [CONE-2012-076] 93-180 ($mass_{(m/\pi^{0})} = 0$			
≥ä	$\vec{x}^{\dagger}\vec{x}^{\dagger}\vec{x}^{\dagger} \rightarrow \vec{h}_{1}(\vec{h}_{1}) \rightarrow \vec{h}_{2}\vec{x}^{\dagger} \geq 2 \text{ lep } + E$	(=4.7 fb ⁻¹ .7 TeV (CONE-2012-076)	120-330 GeV $\tilde{\chi}^{\pm}$ mass $(m/\bar{\chi}^{0}) = 0$ $m(\bar{\chi}) = \frac{1}{2}(m/\bar{\chi}^{0})$	$+ m(\bar{x}^{0}))$		
ш З	$\overline{x_1}$ \overline	L=4.7 (b) (7 (b) + 7 (b) + 7				
	AMSB (direct $\tilde{\chi}^+$ pair prod.) : long-lived $\tilde{\chi}^-$	/ =4.7 fb ⁻¹ , 7 TeV IATLAS-CONE-2012-1111 21	0 GeV $\tilde{\chi}^{\pm}$ mass $(1 \le \tau/\tau^{\pm}) \le 10$ ps)	x1/ 0,(/us usora)		
ъ.	AMSB : long-lived $\tilde{\chi}_{\pm}^{\pm}$	1 =4.7 fb ⁻¹ 7 TeV ICE-2012-0341 118 GeV 7	$\pm mass_{1} = (1 < \tau/\tau^{\pm}) < 2 \text{ ns} = 90 \text{ GeV limit in } (0.2,901 \text{ ns})$			
evi les	Stable \tilde{a} P badrops : Full detector	$l = 4.7 \text{ (b}^{-1} \text{ 7 TeV IATLAS-CONF-2012-075)}$ 985 GeV $\tilde{0}$ mass				
1g-	Stable & R-hadrons - Full detector	L=4.7 fb ⁻¹ .7 TeV IATLAS-CONF-2012-0751 683 GeV 1 mass				
0 8	Metastable a R-hadrons : Pixel det only	L=4.7 (b ⁻¹ , 7 TeV IATLAS-CONE-2012-075) 910 GeV 0 mass (τ(δ) > 10 os)				
	CMSR : etable #	L=4.7 fb ⁻¹ .7 TeV IATLAS-CONF-2012-0751 310 GeV T MASS (5 < tan6 < 20)				
	RPV · high-mass eu	$(1.11 \text{ (b}^{-1} \text{ 7 TeV})^{(1109.3089)}$ $(1.32 \text{ TeV})^{(110.3117)}$ $(1.32 \text{ TeV})^{(110.3117)}$ $(1.32 \text{ TeV})^{(1109.3089)}$				
>	Bilinear RPV : 1 lep + i's + E	$I = 1.0 \text{ fb}^{-1}$ 7 TeV [1109.6606] 760 GeV $\tilde{q} = \tilde{q}$ mass $(\sigma_x < 15 \text{ mm})$				
2	BC1 RPV : 4 lep + E	/ =2.1 (b ⁻¹ , 7 TeV IATLAS-CONF-2012-035) 1.77 TeV IATLAS-CONF-2012-035)				
	$\text{RPV} \overline{2}^0 \rightarrow \text{age} : u + \text{beavy displaced vertex}$	$1 = 4.4 \text{ fb}^2 \text{ 7 TeV [ATLAS-CONE-2012-113]}$ 700 GeV $\tilde{\Omega}$ mass $(3.0 \times 10^{-5} \text{ s}) = (1.5 \times 10^{-5} \text{ 1 mm} \text{ s} \text{ cr} \text{ s} 1 \text{ m} \tilde{\Omega}$ decoupled)				
$r_{r} v_{L} \rightarrow qq\mu, \mu + neavy$ usplaced vertex μ =4.4 fb, $r_{r} v_{l}$ (at as cont-2012-113) 700 GeV q mass (s.0×10 < Λ_{211} < 1.5×10 , 1 mm < ct < 1 m, g = 10000000000000000000000000000000000						
hei	Spin dep, WIMP interaction : monoiet + F-	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONE-2012-084]	709 GeV M* scale (m_ < 100 C	eV. vector D5. Dirac 7.)		
õ	Spin indep. WIMP interaction : monoiet + F_{-}	$l = 4.7 \text{ fb}^{-1}$ 7 TeV [ATLAS_CONE_2012_084]	548 GeV M* scale /m < 100 GeV	tensor D9, Dirac y)		
		40-1	4	10		
		10 '	1	10		

10⁻¹

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

Searches for heavy W and Z like particles

These searches are quite straight-forward, following basically the same analyses as for the familiar W and Z bosons

Z': Di-lepton pairs

W': Lepton + ETmiss

R Sundrum L Randall F Gianotti

ATLAS-CONF-2012-129

Randall-Sundrum Graviton

ATLAS-CONF-2012-007

New particles decaying into two photons

P Jenni (CERN)

Example for a search of

Example of searches for New Physics as deviations from QCD behaviour of hadronic jet distributions

Search for resonances in the di-jet mass spectrum

ATLAS-CONF-2012-088

95% CL excluded mass: 3.66 TeV

Search for direct Dark Matter (DM) particles in pair-production

A single photon (150 GeV) or jet plus ETmiss

ATLAS-CONF-2012-085 arXiv:1210.4491v1[hep-ex]

Prague, 25-10-2012 P Jenni (CERN) CMS: Sub. to Phys. Rev. Lett. arXiv:1204.0821v1[hep-ex] arXiv:1206.5663[hep-ex]

If theories with Extra-dimensions are true, microscopic black holes could be abundantly produced and observed at the LHC

Simulation of a black hole event with $M_{BH} \sim 8 \text{ TeV}$ in ATLAS

Prague, 25-10-2012 P Jenni (CERN) They decay immediately through Stephen Hawking

radiation

If theories with Extra-dimensions are true, microscopic black holes could be abundantly produced and observed at the LHC

CMS Experiment at LHC, CERN Data recorded: Mon May 23 21:46:26 2011 EDT Run/Event: 165567 / 347495624 Lumi section: 280 Orbit/Crossing: 73255853 / 3161

A real 'candidate' event of a 'black hole' in CMS with 9 jets and ST = 2.6 TeV

Prague, 25-10-2012 P Jenni (CERN)

Search for Microscopic Black Hole production in models wth large extra dimensions (Arkani-Hamed, Dimopoulos, Dvali)

Decay into many objects (jets, leptons, photons)

 ΣP_T : scalar sum of the E_T of the N objects in the event

Examples: (ATLAS) at least one electron or muon and two or more jets, (CMS) any three objects

No deviation is seen for events with at least 3 objects with > 50 GeV pT

Prague, 25-10-2012 P Jenni (CERN)

S_T (GeV)

ATLAS 95%CL limits ATLAS Exotics Searches* - 95% CL Lower Limits (Status: LHCC, Sep 2012)

			<u> </u>		
	Large ED (ADD) : monojet + E _{T,miss}	L=1.0 fb ⁻¹ , 7 TeV [ATLAS-CONF-2011-096]	3.39 TeV	$M_D(\delta=2)$	
	Large ED (ADD) : monophoton + E _{T,miss}	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M _D (δ=	2)	ATLAS
ns	Large ED (ADD) : diphoton, m _{yy}	L=4.9 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-087]	3.29 TeV	M _s (GRW cut-off, NL	O) Preliminary
.0	UED : diphoton + E _{T,miss}	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.41 TeV Compact. se	cale 1/R	
SUS	RS1 with $k/M_{Pl} = 0.1$: diphoton, $m_{\gamma\gamma}$	L=4.9 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-087]	2.06 TeV Gravit	on mass	ſ
ne	RS1 with $k/M_{\rm Pl} = 0.1$: dilepton, $m_{\rm ll}$	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	2.16 TeV Gravit	ton mass	$Ldt = (1.0 - 6.1) \text{fb}^{-1}$
di	RS1 with $k/M_{Pl} = 0.1$: ZZ resonance, $m_{IIII / IIII}$	L=1.0 fb ⁻¹ , 7 TeV [1203.0718]	845 Gev Graviton mass		J
a,	RS1 with $k/M_{\rm Pl} = 0.1$: WW resonance, $m_{T,\rm NIN}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton mass	s	s = 7, 8 TeV
Xth	RS with BR($g_{KK} \rightarrow tt$)=0.925 : $tt \rightarrow 1$ +jets, $m_{t,boosted}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-136]	1.9 TeV KK glud	on mass	
Ш	ADD BH (M _{TH} /M _D =3) : SS dimuon, N _{ch. part.}	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV M _D (δ=6)		
	ADD BH $(M_{TH}/M_{D}=3)$: leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV M _D (δ=6)	_	
	Quantum black hole : dijet, $F_y(m_{\parallel})$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]	4.11 Te	$M_D(\delta=6)$	
_	qqqq contact interaction : $\chi(m)$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]		7.8 TeV A	
0	qqll Cl : ee, μμ combined, m __	L=1.1-1.2 fb ⁻¹ , 7 TeV [1112.4462]		10.2 TeV A (Cr	onstructive int.)
	uutt CI : SS dilepton + jets + E _{T.miss}	L=1.0 fb ⁻¹ , 7 TeV [1202.5520]	1.7 TeV A		
	Z' (SSM) : m _{ee/μμ}	L=5.9-6.1 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-129]	2.49 TeV Z' n	nass	
	Z' (SSM) : m _{et}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-067]	1.3 TeV Z' mass		
~	W' (SSM) : m _{τ,e/μ}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W	mass	
_	W' (\rightarrow tq, g _B =1): m_{tq}	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-096] 350	Gev W'mass		
	$W'_{R} (\rightarrow tb, SSM) : m_{tb}$	L=1.0 fb ⁻¹ , 7 TeV [1205.1016]	1.13 TeV W' mass		
	W* : m _{τ.e/μ}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.42 TeV W* /	mass	
Q	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1° gen. LQ mass		
-	Scalar LQ pairs (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2 nd gen. LQ mass	Verv sir	nilar limits
S	4 [™] generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	656 GeV t' mass		
ar	4" generation : b'b'($T_{5/3}T_{5/3}$) \rightarrow WtWt	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130]	670 Gev b' (T 5/3) mass	come fr	om CMS
nk	New quark b' : b'b' $\rightarrow Zb+X, m_{Zb}$	L=2.0 fb ⁻¹ , 7 TeV [1204.1265] 40	lo Gev b' mass		
ž	Top partner : $I I \rightarrow tt + A_0 A_0$ (dilepton, M ₁₂)	L=4.7 fb ⁻¹ , 7 TeV [1209.4186]	483 GeV T mass $(m(A_0) < 100 \text{ GeV})$		
le	Vector-like quark : CC, mivg	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (cha	arge -1/3, coupling κ_{qC}	$p = v/m_Q)$
<	Vector-like quark : NC, m _{liq}	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ mass (cha	rge 2/3, coupling $\kappa_{q\Omega}$:	$= v/m_{Q}$
ps us	Excited quarks : γ -jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q* n	nass	
i i fe	Excited quarks : dijet resonance, m	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-088]	3.66 TeV	q* mass	
XE	Excited electron : e-y resonance, m	L=4.9 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-008]	2.0 TeV e* mas	ss (Λ = m(e*))	
шæ	Excited muon : µ-y resonance, m	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-008]	1.9 TeV μ* mass	s (Λ = m(μ*))	
	Techni-hadrons (LSTC) : dilepton, m _{ee/µµ}	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV $ρ_{\rm T}/ω_{\rm T}$ mass ($m(ρ_{\rm T}/α)$	$a_{T}) - m(\pi_{T}) = M_{W})$	
-	Techni-hadrons (LSTC) : WZ resonance (VIII), m	L=1.0 fb ⁻¹ , 7 TeV [1204.1648]	483 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{T}$	$_{W}, m(a_{T}) = 1.1 m(\rho_{T}))$	
he	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass (m	$H(W_R) = 2 \text{ TeV})$	
ð	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	2.4 TeV W _R	mass (m(N) < 1.4 TeV	/)
	H_{L}^{L} (DY prod., BR($H_{L}^{L} \rightarrow \mu\mu$)=1): SS dimuon, $m_{\mu\mu}$	L=1.6 fb ⁻¹ , 7 TeV [1201.1091] 355	Gev H ^{II} mass		
	Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]	1.94 TeV Scalar	resonance mass	
		10 ⁻¹	1	10	
		10	1	10	
*					wass scale [TeV]

This was a very restricted selection, just examples, of first physics highlights from ATLAS and CMS

Roadma

Prace, 25-1

P Jenni (CERI

LHC Schedule Assumptions

20 years of working with the Czech colleagues and friends in ATLAS was a real pleasure, and we are looking forward to a bright common future with LHC and its upgrades of the machine and the experiment

Exciting times for discoveries are ahead of us!

MAR

Spares

LHC Accelerator Challenge: Dipole Magnets

Coldest Ring in the Universe ? 1.9 K (CMBR is about 2.7 K)

LHC magnets are cooled with pressurized superfluid helium

Prague, 25-10-2012 P Jenni (CERN) For p = 7 TeV and R = 4.3 km ⇒ B = 8.4 T

⇒ Current 12 kA

Interconnections of two magnets

One (superconductor) joint failed on 19th September 2008, and it caused a catastrophic He-release that made serious collateral damage to sector 3-4 of the LHC machine

Prague, 25-10-2012 P Jenni (CERN)

Prague, 26-10-20 P Jenni (CERN) Month in Year

Example for the typical trigger rates

Three levels of event selections:

Level-1 underground with purpose-made electronics and processors

Level-2 and Event Filter in a large computer farm located at the surface of Point-1

(Noted in the plot are the output rates)

Typical recorded rates for main streams e/γ, Jets/τ/E_T^{miss}, Muons: ~ 100 Hz each
 Delayed stream (future Tier0 reconstruction): B-physics (~65 Hz) and Hadronic (~80 Hz)
 Note: currently 564 items in the trigger menu

Heavy Ion Running in 2011

Pb-Pb event with jets

Uncorrected p_T of each jet ~160 GeV

Run 168875, Event 1577540 Time 2010-11-10 01:27:38 CET

Heavy Ion Collision Event with 2 Jets

Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS Detector at the LHC

G. Aad et al. (The ATLAS Collaboration)*

Phys. Rev. Lett. 105 (2010) 252303

Such an effect could be the first direct indication of 'jet-quenching'

Studied with full 2011 dataset (~ 150 µb⁻¹) □ As expected: no suppression observed of the weakly interacting bosons

Date: 2011-11-22 09:40:59 CET

Example of top signals in the case of di-lepton channels

JHEP 1205 (2012) 059

Prague, 25-10-2012 P Jenni (CERN)

LHC Roadmap

More details on top measurements...

Prague, 25-10-2012 P Jenni (CERN)

LHC Roadmap

Higgs Boson Decay	Subsequent Decay	Sub-Channels	$\int \mathbf{L} dt$ [fb ⁻¹]	Ref.					
$2011 \sqrt{s} = 7 \text{ TeV}$									
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	4.8	[3]					
$H \rightarrow \gamma \gamma$	_	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	4.8	[4]					
$H \rightarrow WW^{(*)}$	<i>ℓνℓν</i>	$\{ee, e\mu/\mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{\text{low, high pile-up}\}$	4.7	[5]					
	$\tau_{\rm lep} \tau_{\rm lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, VH\}$	4.7						
$H \to \tau \tau$	$\tau_{\rm lep} \tau_{\rm had}$	4.7	[6]						
	$ au_{ m had} au_{ m had}$	{1-jet}	4.7						
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	4.6						
$VH \rightarrow Vbb$	Vbb $W \to \ell v$ $p_T^W \in \{< 50, 50 - 100, 100 \\ Z \to \ell \ell$ $Z \to \ell \ell$ $p_T^Z \in \{< 50, 50 - 100, 100 \\ p_T^Z \in \{< 50, 50 - 100, 100 \\ R = 100, 100, 100 \\ R = 100, 100 \\ R = 100, 100 \\ R = 100, 100, 100$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	4.7	[7]					
		$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	4.7						
$2012 \sqrt{s} = 8 \text{ TeV}$									
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	5.8	[3]					
$H \rightarrow \gamma \gamma$	_	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	5.9	[4]					
$H \to WW^{(*)}$	evμv	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	5.8	[8]					

Prague, 25-10-2012 P Jenni (CERN)

95% CL Limit on σ/σ_{SM}

Evolution of the excess with time

Prague, 25-10-2012 P Jenni (CERN)

CDF and D0 Collaborations

Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson search at the Tevatron, submitted to Phys. Rev. Lett. (2012), arXiv:1207.6436.

Searches for charginos/neutralinos

- Direct chargino/neutralino production cross section in the pb range
- ATLAS has searched for this in 3-lepton final state
- Limits in the m($\chi^{\pm}_{1}/\chi^{0}_{2}$) ~ 250 GeV region have been set

(Z-depleted and Z-enriched signal regions)

Prague, 25-10-2012 P Jenni (CERN)

LHC Roadmap

Accepted in Phys. Rev. Lett. arXiv:1204.5638v1[hep-ex]

Prague, 25-10-2012 P Jenni (CERN)

SUSY - 3rd generation squarks

- Look for light stop and sbottom ("Naturalness"): from gluino decay + direct production
 - Gluino-mediated sbottom search in events w/ b-jets + 0,1-lepton + MET [ATLAS-CONF 2012-003]
 - Gluino-mediated stop search in events w/ SS dilepton + 4 jets + MET [ATLAS-CONF 2012-004]
 - Direct sbottom search in events w/ 2 b-jets + MET [arXiv:1112.3832]
 - Direct stop search in events w/ dilepton + b-jets (GMSB interpretation) [ATLAS-CONF 2012-036]

Strong limits from search for gluino-mediated sbottom production in events with b-jets

First limits on direct stop pair production, assuming (a.o.) the decay chain: $t_1 \rightarrow t + \chi^0 \rightarrow t + Z(ll) + G$

SUSY searches: "soft" leptons

- Dedicated search in "strong" production to deal with "compressed mass spectra (small DM)
 - 1-soft lepton + 2 jets + high MET

1-step simplified models leading to final states with leptons + jets + MET

Prague, 25-10-2012 P Jenni (CERN)

Early hints of news from 'Beyond the Standard Model' may come from 'beautiful' flavour physics...

Prague, 25-10-2012 P Jenni (CERN)

Rare decays: $B_s^{} \rightarrow \mu^+\mu^-$

One of the most sensitive probes of New Physics

- Standard Model: FCNC, helicity suppressed: Br(SM) = $(3.2 \pm 0.2) \times 10^{-9}$
- · Can be enhanced in NP models.

MSSM: BR $\propto \left(C_{S,P}^{MSSM}\right)^2 \propto \frac{\tan^6 \beta}{M_A^4}$

Combinatorial Background

	CDF	CMS	Atlas	LHCb	SM
Luminosity (fb-1)	10	4.9	2.4	1.1	
$Br(B_d \rightarrow \mu^+ \mu^{\text{-}})$ 95% CL (x10 $^{\text{-}9})$	4.6	1.8		1.03	0.10 ± 0.01
$Br(B_{_S} \rightarrow \mu^+ \mu^{_})$ 95% CL (x10 $^{9})$	31	7.7	22	4.5	3.2 ± 0.2

No deviation (yet) observed from Standard Model (combined limit from all the 3 exp'ts is 4.2 x 10⁻⁹)

Prague, 25-10-2012 P Jenni (CERN)

LHC Roadmap

Phys. Rev. Lett. 108 (2012) 231801

and LHCb-PAPER-2012-017