Experimental checks of low energy QCD precise predictions using $\pi^+\pi^-$, $K^+\pi^-$ and $K^-\pi^+$ atoms

> Leonid Nemenov JINR Dubna Prague 26.11.2012

Outline

- Low-energy QCD precise predictions
- Lattice calculation precise predictions
- Results on the $\pi\pi$ scattering lengths measurement
- $\pi\pi$ earch for $K^+\pi^-$ and $K^-\pi^+$ atoms
- Status of the long-lived ππ atom states observation. Prospects of the Lamb-shift measurement.
- New prospects of DIRAC at SPS CERN

DIRAC collaboration

Theoretical motivation

Theoretical status

In ChPT the effective Lagrangian, which describes the $\pi\pi$ interaction, is an expansion in (even) terms:

$$L_{eff} = L^{(2)} + L^{(4)} + L^{(6)} + \cdots$$
(tree) (1-loop) (2-loop)

Colangelo et al. in 2001, using ChPT (2-loop) & Roy equations:

$$\begin{array}{c} a_0 = & 0.220 \pm 2.3\% \\ a_2 = -0.0444 \pm 2.3\% \end{array} \right\} \quad a_0 - a_2 = 0.265 \pm 1.5\% \\ \end{array}$$

These results (precision) depend on the low-energy constants (LEC) l_3 and l_4 : Lattice gauge calculations from 2006 provided values for these l_3 and l_4 .

Because l_3 and l_4 are sensitive to the quark condensate, precision measurements of a_0 , a_2 are a way to study the **structure** of the QCD vacuum.

$\pi\pi$ scattering

ChPT predicts s-wave scattering lengths:

 $a_0 = 0.2220 \pm 0.005 (2.3\%)$ $a_2 = -0.0444 \pm 0.0010 (2.3\%)$ $a_0 - a_2 = 0.265 \pm 0.004 (1.5\%)$

The expansion of M_{π}^2 in powers of the quark masses starts with the linear term:

$$M_{\rho}^{2} = (m_{u} + m_{d})B - [(m_{u} + m_{d})B]^{2} \frac{I_{3}}{32\rho^{2}F^{2}} + O((m_{u} + m_{d})^{3})$$

where $B = \frac{1}{F_{\pi}^2} |\langle 0 | \bar{q} q | 0 \rangle|$ is the quark condensate, reflecting the property of QCD vacuum. The estimates indicate values in the range $0 < \bar{l}_3 < 5$

Measurement of $\bar{l}_3 \Longrightarrow$ improved the value of $(m_u + m_d) |\langle 0| \bar{u}u |0\rangle|$

e.g.: $a_0 - a_2 = 0.260 \pm 3\% \implies 1 < \overline{l_3} < 11 \text{ or } 1.00 < M / M_{\pi} < 1.06$ E865: $a_0 = 0.216 \pm 6\% \implies -4 < \overline{l_3} < 12 \text{ or } 0.98 < M / M_{\pi} < 1.06$

Lattice calculations of \overline{l}_3 , \overline{l}_4

- 2006 \overline{l}_3 , \overline{l}_4 First lattice calculations
- 2012 10 collaborations: 3 USA, 5 Europe, 2 Japan
- J.Gasser, H.Leutwyler Model calculation(1985) $\bar{l}_3=2.6\pm2.5$ $\Delta \bar{l}_3/\bar{l}_3\approx1$
- Lattice calculations in 2012-2013 will obtain Δl₃/l₃≈0.1 or Δl₃≈ 0.2-0.3
- To check the predicted values of \overline{l}_3 the experimental relative errors of $\pi\pi$ -scattering lengths and their combinations must be at the level (0.2–0.3)%

Pionium lifetime

Pionium (A_{2 π}) is a hydrogen-like atom consisting of π^+ and π^- mesons: E_B=-1.86 keV, r_B=387 fm, p_B \approx 0.5 MeV

The lifetime of $\pi^+\pi^-$ atoms is dominated by the annihilation process into $\pi^0 \pi^0$:

$$\Gamma = \frac{1}{\tau} = \Gamma_{2\pi_0} + \Gamma_{2\gamma} \quad \text{with} \quad \frac{\Gamma_{2\gamma}}{\Gamma_{2\pi_0}} \approx 4 \times 10^{10}$$
$$\Gamma_{1S,2\pi^0} = R |a_0 - a_2|^2 \quad \text{with} \quad \frac{\Delta R}{R} \approx 1.2\%$$
$$T = (2.9 \pm 0.1) \times 10^{-15} \text{ s}$$

 a_0 and a_2 are the $\pi\pi$ S-wave scattering lengths for isospin I=0 and I=2.

If
$$\frac{\Delta \tau}{\tau} = 4\% \implies \frac{\Delta |a_0 - a_2|}{|a_0 - a_2|} = 2\%$$

√-3

$K^+\pi^-$ and $K^-\pi^+$ atoms lifetime

Kπ-atom ($A_{K\pi}$) is a hydrogen-like atom consisting of K^+ and π^- mesons:

 $E_B = -2.9 \text{ keV} r_B = 248 \text{ fm} p_B \approx 0.8 \text{ MeV}$

The $K\pi$ -atom lifetime (ground state 1S), $\tau=1/\Gamma$ is dominated by the annihilation process into $K^0\pi^0$:

$$A_{K^{+}\pi^{-}} \to \pi^{0}K^{0} \quad A_{\pi^{+}K^{-}} \to \pi^{0}\overline{K}^{0}$$

$$\Gamma_{1S,K^0\pi^0} = R_K \left| a_{1/2} - a_{3/2} \right|^2 \text{ with } \frac{\Delta R_K}{R_K} \approx 2\%$$

(**) J. Schweizer (2004)

From Roy-Steiner equations: $a_0^{1/2} - a_0^{3/2} = 0.269 \pm 0.015$ $\tau = (3.7 \pm 0.4) \cdot 10^{-15} s$

If
$$\frac{\Delta\Gamma}{\Gamma} = 20\% \implies \frac{\Delta |a_{1/2} - a_{3/2}|}{|a_{1/2} - a_{3/2}|} = 10\%$$

Coulomb pairs and atoms

The production yield strongly increases for smaller Q

Method of $A_{2\pi}$ observation and measurement

Production of $A_{2\pi}$ in Beryllium target

Distribution over $|Q_L|$ of $\pi^+\pi^-$ pairs collected in 2010 (left) and in 2011 (right) with Beryllium target with the cut $Q_T < 1$ MeV/c. Experimental data (points with error bars) have been fitted by a sum of the simulated distribution of "Coulomb" and "non-Coulomb" pairs (dashed line).

 $N_{A_{2\pi}}/p = (5.9 \pm 0.5) \times 10^{-14}$ (2011)

Break-up probability

Solution of the transport equations provides one-to-one dependence of the measured break-up probability (P_{br}) on pionium lifetime τ

DIRAC setup

Modifided parts

MDC - microdrift gas chambers, SFD - scintillating fiber detector, IH – ionization hodoscope. DC - drift chambers, VH – vertical hodoscopes, HH – horizontal hodoscopes, Ch – nitrogen Cherenkov, PSh - preshower detectors, Mu - muon detectors

1 4

DIRAC results with GEM/MSGC

Q_L distribution

←All events

←After background subtraction

DIRAC results with GEM/MSGC

Comparition with other experimental results

$K \rightarrow 3\pi$:

2009 NA48/2 (EPJ C64, 589) ...without constraint between a_0 and a_2 : $\Rightarrow a_0 - a_2 = 0.2571 \pm 1.9\% \Big|_{stat} \pm 1.0\% \Big|_{syst} \pm 0.5\% \Big|_{ext} = ... \pm 2.2\% \text{ and } 3.4\% \text{ theory}_{uncertainty}$

...with ChPT constraint between a_0 and a_2 :

$$\Rightarrow a_0 - a_2 = 0.2633 \pm 0.9\% \Big|_{stat} \pm 0.5\% \Big|_{syst} \pm 0.7\% \Big|_{ext} = \dots \pm 1.3\% \text{ and } 2\% \text{ theory} uncertainty}$$

Ke4:

2010 NA48/2 (EPJ C70, 635) ...without constraint between a_0 and a_2 : $\Rightarrow a_0 = 0.2220 \pm 5.8\% \Big|_{stat} \pm 2.3\% \Big|_{syst} \pm 1.7\% \Big|_{theo} = ... \pm 6.4\%$ $\Rightarrow a_2 = -0.0432 \pm 20\% \Big|_{stat} \pm 7.9\% \Big|_{syst} \pm 6.5\% \Big|_{theo} = ... \pm 22\%$

...with ChPT constraint between a_0 and a_2 :

$$\Rightarrow a_0 = 0.2206 \pm 2.2\% \big|_{stat} \pm 0.8\% \big|_{syst} \pm 2.9\% \big|_{theo} = \dots \pm 3.7\%$$

DIRAC data	$ au_{1s}~(10^{-15}{ m s})$ value stat syst theo* tot	$ a_0 - a_2 $ value stat syst theo* tot	Reference
2001	$2.91 \begin{array}{c} +0.45 \\ -0.38 \\ -0.49 \end{array} \left[\begin{array}{c} +0.49 \\ -0.62 \end{array} \right]$	$0.264 \begin{array}{c} +0.017 +0.022 \\ -0.020 -0.009 \end{array} \begin{bmatrix} +0.033 \\ -0.020 \end{bmatrix}$	PL B 619 (2005) 50
2001-03	$3.15 \begin{array}{c} +0.20 \\ -0.19 \\ -0.18 \end{array} \left[\begin{array}{c} +0.28 \\ -0.26 \end{array} \right]$	$0.2533^{+0.0078+0.0072}_{-0.0080-0.0077} \left[\begin{smallmatrix} +0.0106 \\ -0.0111 \end{smallmatrix} \right]$	PL B 704 (2011) 24

* theoretical uncertainty included in systematic error

NA48	K-decay	$a_0 - a_2$				Reference	
		value	stat	syst	theo	tot	
2009	Κ _{3π}	0.2571	± 0.0048	± 0.0029	0.0088		EPJ C64 (2009) 589
2010	K _{e4} & K _{3π}	0.2639	± 0.0020	± 0.0015			EPJ C70 (2010) 635

New data on $\pi\pi$ atom production

Multiple scattering measurement 100 mkm Ni target

$\pi^+\pi^-$ data

Statistics for measurement of $|a_0-a_2|$ scattering length difference and expected precision

Year	n _A	δ_{stat} (%)	$\Delta_{\rm syst}$	$\delta_{\rm syst}$ (%) MS	δ_{tot} (%)
			(%)		
2001-2003	21000	3.1	3.0	2.5	4.3
2008-2010 *	24000	3.0	3.0	2.5	4.3
2001-2003	45000	2.1	3.0	2.5	3.7
2008-2010			(2.1)	(1.25)	(3.0)

* There is 40% of data with a higher background whose implication is under investigation.

What new will be known if πK scattering length will be measured?

The measurement of the *s*-wave πK scattering lengths would test our understanding of the chiral $SU(3)_L \times$ $SU(3)_R$ symmetry breaking of QCD (u, d and s quarks), while the measurement of $\pi \pi$ scattering lengths checks only the $SU(2)_L \times SU(2)_R$ symmetry breaking (u, dquarks).

This is the principal difference between $\pi\pi$ and πK scattering!

Experimental data on the πK low-energy phases are absent

 $K^{+}\pi^{-}$, $Q_{T} < 3 \text{ MeV/c}$, data 2008, 2009, 2010

 π^{+} K⁻, Q₁ < 3 MeV/c, data 2008, 2009, 2010

Long-lived $\pi^+\pi^-$ atoms

The observation of $\pi\pi$ atom long-lived states opens the future possibility to measure the energy difference between *ns* and *np* states $\Delta E(ns-np)$ and the value of $\pi\pi$ scattering lengths $|2a_0+a_2|$.

If a resonance method can be applied for the $\Delta E(ns-np)$ measurement, then the precision of $\pi\pi$ scattering length measurement can be improved by one order of magnitude relative to the precision of other methods.

Method to observe long-lived $A_{2\pi}$ by means of a breakup foil of Platinum

$A_{2\pi}$ lifetime, τ , in np states

n _H	τ _H •10 ⁸ s	$\tau_{2\pi} \bullet 10^{11} s$	Decay length
			$A_{2\pi}$ in L.S. cm
			for γ=16.1
2p	0.16	1.17	5.7
3р	0.54	3.94	19
4p	1.24	9.05	44
5р	2.40	17.5	84.5
6р	4.1	29.9	144
7p		46.8 [*]	226
8p		69.3 [*]	335

* - extrapolated values

M. Pentia

"Long-lived $A_{2\pi}$ " yield and quantum numbers

L. Afanasev; O. Gorchakov (DIPGEN)

Atomic pairs from "long-lived $A_{2\pi}$ " breakup in 2µm Pt.

Ionization

Excitation

24 GeV/c

Interaction point

 π^+

Atomic pairs

 π^{-}

Simulation of long-lived A₂₁₁ observation

Without magnet

With magnet after Be target

Simulated distribution of $\pi^+\pi^-$ pairs over Q_Y with criteria: $|Q_X| < 1$ MeV/c, $|Q_L| < 1$ MeV/c. "Atomic pairs" from long-lived atoms (light area) above background (hatched area) produced in Beryllium target.

Simulation of $\pi^+\pi^-$ pairs from Beryllium target and "atomic pairs" from Platinum foil

Distributions of reconstructed values of Q_T for non-Coulomb, Coulomb pairs and pairs from metastable atom

▲□▶▲□▶▲三▶▲三▶ ● ① ◇◇◇

Simulation of extraction the long-lived $A_{2\pi}$ signal

Simulated distribution of $\pi^+\pi^-$ pairs over Q_L , with criterion $Q_T < 1$ MeV/c. "Experimental data" (points with error bars) are fitted by the sum of "atomic pairs" from long-lived states (dashed line), "Coulomb pairs" (by dotted-dashed line), "non-Coulomb pairs" (dotted line). The background sum is shown by the solid line.

Simulated distribution of $\pi^+\pi^-$ pairs over F, with criterion $Q_T < 2$ MeV/c. "Experimental data" (points with error bars) are fitted by the sum of "atomic pairs" from long-lived states (dashed line), "Coulomb pairs" (dotted-dashed line), "non-Coulomb pairs" (dotted line). The background sum is shown by the solid line.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□ ◆ ○へで

Magnet design

Layout of the dipole magnet (arrows indicate the direction of magnetization)

Integrated horizontal field homogeneity inside the GFR X×Y = 20 mm × 30 mm: Δ [Bxdz/ [Bx(0,0,z)dz [%]

Horizontal field distribution along z-axis at X=Y=0 mm [Bx(0,0,z)dz= 24.6×10⁻³ [T×m]

Magnetic field stability measured by Q_v of the e⁺e⁻ pair

Degradation of the old magnet in June-August 2011

The position of second peak in Q_Y distributions of e^+e^- pairs versus dates.

Lamb shift measurement with external magnetic field

See: L. Nemenov, V. Ovsiannikov, Physics Letters B 514 (2001) 247.

Impact on atomic beam by external magnetic field B_{lab} and Lorentz factor γ

$$\left|\vec{E}\right| = \beta \gamma B_{lab} \approx \gamma B_{lab}$$

1.9 Resonant enhancement of the annihilation rate of $A_{2\pi}$

L.Nemenov, V.Ovsiannikov, E.Tchaplyguine, Nucl. Phys. (2002)

Resonant enhancement

Resonant method

$A_{2\pi}$ and $A_{\pi K}$ production

 $\frac{d\sigma_{nlm}^{A}}{d\vec{P}} = (2\pi)^{3} \frac{E}{M} \left| \psi_{nlm}^{(C)}(0) \right|^{2} \frac{d\sigma_{s}^{0}}{dp_{1}dp_{2}} \bar{\alpha} \frac{d\sigma}{dp_{1}} \cdot \frac{d\sigma}{dp_{2}}$ for atoms $\vec{v}_1 = \vec{v}_2$ where \vec{v}_1, \vec{v}_2 - velocities of particles in the L.S. for all types of atoms for $A_{2\pi}$ production $\vec{p}_1 = \vec{p}_2$ for $A_{\pi K}$ production $\vec{p}_{\pi} = \frac{m_{\pi}}{m} \vec{p}_{K}$

$A_{2\pi}$ and $A_{\pi K}$ production on PS and SPS at CERN

$A_{2\pi}$ and $A_{\pi K}$ production on PS and SPS at CERN

	Yield ratio
π ⁺ π [−] atoms	17
π ⁺ K ⁻ atoms	35
K⁺π [−] atoms	27

The ratio of $\pi^+\pi^-$, π^+K^- and $K^+\pi^-$ atom yields at the proton momenta 450 GeV/c and angle 4° to the yields at the proton momenta 24 GeV/c and angle 5.7°.

Conclusion

- DIRAC experiment on PS CERN measured $\pi^+\pi^$ atom lifetime with precision about 9%. With the existing additional statistic the lifetime will be measured with precision about 6% and $\pi\pi$ scattering lengths with accuracy about 3%.
- The existing statistics allows to measure the $K\pi$ cross section production.
- The statistics obtained in 2011 and 2012 allows to observe the long-lived $\pi^+\pi^-$ atoms

Conclusion

The same setup on SPS CERN will allow:

- To measure the K π atom lifetime with precision better than 10% and to perform the first measurement of K π scattering lengths
- To measure the Lamb shift of $\pi^+\pi^-$ atom.

Thank you for your attention

πK scattering lengths

I. ChPT predicts s-wave scattering lengths:

 $a_0^{1/2} = 0.19 \pm 0.2$ $a_0^{3/2} = -0.05 \pm 0.02$ L⁽²⁾, L⁽⁴⁾ and 1 - loop

V. Bernard, N. Kaiser, U. Meissner. – 1991

$$a_0^{1/2} - a_0^{3/2} = 0.23 \pm 0.01$$
 A. Rossel. – 1999

J. Bijnens, P. Talaver. – April 2004

 $L^{(2)}, L^{(4)}, L^{(6)}$ and 2-loop

II. Roy-Steiner equations:

 $a_0^{1/2} - a_0^{3/2} = 0.269 \pm 0.015$

P.Büttiker et al. -2004

Production, annihilation and breakup of long-lived $A_{2\pi}$

Relative populations (‰) of $A_{2\pi}$ long-lived states at the Be target exit as a function of principal quantum number n and orbital momentum I

1 ⁿ	2	3	4	5	6	7	8
1	417	148	48	18	7	3	1
2	0	117	49	20	9	4	1
3	0	0	45	21	10	4	2
4	0	0	0	20	10	5	2
5	0	0	0	0	10	5	2
6	0	0	0	0	0	4	2
7	0	0	0	0	0	0	2

Breakup probability of $A_{2\pi}$ in np states for different thicknesses of Platinum foils ($A_{2\pi}$ momentum $P_A = 4.5 \text{ GeV}/c$ and $A_{2\pi}$ ground-state lifetime $\tau = 3 \times 10^{-15} \text{ s}$)

Thickness (µm)	2р	Зр	4р	5р	6р	7р
0.1	0.0251	0.0520	0.0858	0.1327	0.2035	0.3219
0.2	0.0559	0.1175	0.1978	0.3001	0.4185	0.5392
0.5	0.1784	0.3595	0.5537	0.7176	0.8323	0.9043
1.0	0.4147	0.6895	0.8553	0.9324	0.9667	0.9828
1.5	0.6084	0.8526	0.9446	0.9765	0.9889	0.9944
2.0	0.7422	0.9244	0.9743	0.9895	0.9951	0.9975
3.0	0.8844	0.9739	0.9918	0.9967	0.9985	0.9992

Mechanical structure

The lifetime of $A_{2\pi}$ in electric field

L. Nemenov, V. Ovsiannikov (P. L. 2001)

$$M = \frac{3F\hbar^2}{\mu_l} \delta_{m,0} , \qquad F - \text{strength of electric field in } A_{2\pi} \text{ c.m.s.}$$

$$F = \beta \gamma B_{L'}$$
 B_L in lab. syst.

 \rightarrow m must be 0

0 - 2 2

$$\begin{split} \xi &= \frac{2 M}{\Omega_1} , \qquad \qquad \Omega_1(n=2) = \frac{E_{2s} - E_{2p}}{\hbar} \\ \xi(2s-2p) &= \xi_0 \gamma B_L \qquad \xi_0 \sim \frac{1}{E_{2s} - E_{2p}} \qquad \qquad \xi_n = \frac{\xi_0}{8} n^3 \gamma B_L \\ \tau_n^{eff} &= \frac{\tau_n}{1+120\xi_n^2} \end{split}$$

CONCLUSION: the lifetimes for long-lived states can be calculated using only one parameter $\rightarrow E_{2s}-E_{2p}$.

The probability W(m=0) of $A_{2\pi}$ to have m=0 on \vec{F} will be calculated by L. Afanasev. The preliminary value is W (m=0) \approx 50%.

Period L of resonators for $\gamma = 16$

• Transition 2S-2P 3S-3P 4S-4P 5S-5P

• L, µ 40 125 320 525