

detector

Martina Boháčová for AIRFLY collaboration

- Absolute measurement of the 337 line in air and N_{2}

2.0 X,

Relative measurements: pressure, temperature, humidity energy dependence spectrum slits

W slits

45⁰ magnet

Beam Test Facility Frascati, Italy tunable W target: 1.7, 2.0, 2.3 X₀ e-/e+ 25 - 800 MeV 1 - 10¹⁰ particles/bunch 1ns, 10ns bunch

> M. Boháčová 19, 5, 2006

Final Setup

M. Boháčová pressure and energy dependence, absolute FLY, ... 19. 5. 2006

temperature dependence chamber

- liquid nitrogen cooling system

beam monitoring

X-Y scintillating fibers to monitor beam position

<u>A thin scintillator is also used</u> to monitor beam intensity variations

main light detector: HPD

HPD: the field of view

HPD: the field of view

360 keV electron will travel ~1m in dry air, sea level => may escape the field of view

Data have to be related to the appropriate energy deposit curve

Energy dependence

- energy region 50 420 MeV
- pure nitrogen, 291.5 K, ~1000 hPa
- UG6 filter (300 400 nm)

Temperature dependence

A_i, B_i from the Nagano paper

HPD outside of the cooled region
flushed with dry nitrogen to avoid condensation

New method for absolute measurement of fluorescence yield with AIRFLY

 IDEA: normalize to a well known process (Čerenkov emission) to cancel the detector systematics

narrow band interference filter (10nm)

- transmittance measured for 13 angles and interpolated

relative measurement of the mylar reflectivity

-> (83.6+1)%

Full GEANT4 Simulation

-> 1.53% of Čerenkov photons per electron

Full GEANT4 Simulation

can be compared with the data ...

-> 1.54% of Čerenkov photons per electron - geometry seems to be correct

to increase the dynamic range we lower the high voltage

higher intensity - do not see the individual photon

Čerenkov conversion factor

1. high voltage scan with LED light

2. measure Čerenkov with two different beam intensities and normalize with the scintillator

=> (43.2±1.4)ADC/p.e-

Preliminary absolute yield of 337nm line

- G4Scintillation process used to simulate fluorescence photons

- 19 ph/MeV deposit in a step using Bunner spectrum (corresponds to 4.74 ph/e- at 350 MeV in 1m³ of air - sea level or 1.24 ph/e- at 337nm, 4.17 ph/e between 300-400 nm)
- 337 nm line forms 26.2% of the total photons
- the simulated ratio Fluo/Cere is 1.344e-3

For the absolute yield:

$$\frac{(0.0573 - 0.0049)}{(2134 - 126)} * 43.2 * \frac{(529 - 42)}{(527.6 - 42)} * \frac{1}{1.344.10^{-3}} = 0.841$$

19 ph/MeV * 26.2% * 84.1% = 4.18 ph/MeV

Bunner reports 4.32 ph/MeV at sea level

Preliminary systematic uncertainties

Bkg. Subtraction	1 %	
Normalization with scintillator	1 %	
HPD fit method	3 %	
Beam position	1 %	%
Beam spot	1 %	4.
HPD calibration (ADC/p.e.)	3 %	
Simulation	2 % (energy deposi	t S
45° mirror reflectivity	3 %	
337 nm filter transmission	1 %	
Photocathode uniformity and angle (fluorescence vs Čerenkov)	2 %	
contribution of 333.9 nm line	negligible	looking for other
Transition radiation from mirror (measured evacuating chamber)	negligible	sources of systematic errors

Full GEANT4 Simulation

Summary

- the effect of secondary electrons has to be treated carefully
- the temperature dependence of FLY is observed at the level of 10%
- the preliminary value of the absolute yield of the 337 nm line - 4.18ph/MeV - is consistent with Bunner
- the systematic error is estimated at 6.5%
- measurements at ANL (Argonne National Laboratory, USA) will be covered in the next talks