T. Waldenmaier¹, J. Blümer^{1,2}, H. Klages¹, S. Klepser³

¹Forschungszentrum Karlsruhe,

²Universität Karlsruhe,

³DESY Zeuthen

4th Air Fluorescence Workshop, Prague, May 2006

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Outline						

- Properties
 - Rotational-vibrational spectrum.
 - Mainly three electronic-vibrational band systems between 300 nm and 400 nm: 2P(v' = 0, v''), 2P(v' = 1, v''), 1N(v' = 0, v'')
 - (Radiative) transition rate: $\frac{1}{\tau_{v'}} = \sum_{v''} \frac{1}{\tau_{v' \to v''}} = \frac{1}{\tau_{0v'}}$
 - Constant intensity ratios between transitions within a vibrational band system.

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Collision	al Quenching					

Additional radiationless deactivation channels via collisional energy transfer

• Total transition rate:
$$\frac{1}{\tau_{v'}} = \frac{1}{\tau_{0v'}} + \frac{1}{\tau_{cv'}}$$

- Quenching rate: $\frac{1}{\tau_{c_{V'}}} = \sum_{x} Q_{V'}^{x}(T) \cdot n_{x} , x = N_{2}, O_{2}, Ar, H_{2}O, \dots$
- Quenching rate "constant": $Q_{\nu'}^{x}(T) \propto \sqrt{T}$ (\rightarrow kinetic gas theory)

• Number density:
$$n_x = \frac{p_x}{kT} = \frac{f_x}{kT} \cdot p$$

Total transition rate

$$\frac{1}{\tau_{v'}} = \frac{1}{\tau_{0v'}} \cdot \left(1 + p \cdot \underbrace{\frac{\tau_{0v'}}{kT} \sum_{x} f_x \cdot Q_{v'}^x(T)}_{1/p'_{v'}}\right)$$

 \parallel

→ linear pressure-dependence for constant mixing ratios and temperatures.

$$Y_{\nu',\nu''}(E,p,T) = Y_{\nu'}^0(E) \cdot R_{\nu',\nu''} \cdot \frac{\tau_{\nu'}(p,T)}{\tau_{0\nu'}} \qquad \left[\frac{photons}{dep.\ energy} \right]$$

$$Y_{v',v''}(E,\rho,T) = Y_{v'}^{0}(E) \cdot R_{v',v''} \cdot \frac{\tau_{v'}(\rho,T)}{\tau_{0\,v'}} \qquad \left[\frac{\text{photons}}{\text{dep. energy}}\right]$$

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Fluoresc	ence Yield					

$$Y_{v',v''}(E,p,T) = Y_{v'}^{0}(E) \cdot R_{v',v''} \cdot \frac{\tau_{v'}(p,T)}{\tau_{0,v'}} \qquad \left[\frac{photons}{dep.\ energy}\right]$$

$$Y_{v',v''}(E,p,T) = Y_{v'}^{0}(E) \cdot R_{v',v''} \cdot \frac{\tau_{v'}(p,T)}{\tau_{0,v'}}$$

photons dep. energy

$$Y_{v',v''}(E,p,T) = Y_{v'}^{0}(E) \cdot R_{v',v''} \cdot \frac{\tau_{v'}(p,T)}{\tau_{0,v'}}$$

 $\left[\frac{photons}{dep. energy}
ight]$

Ingredients Intrinsic fluorescence yield of most intensive transition: $Y_{V'}^0(E)$ $\begin{bmatrix} photons \\ dep. \ energy \end{bmatrix}$ Constant intensity ratios $R_{V',V''}$ relative to most intensive transition. Fraction of radiative transitions: $\frac{\tau_{V'}(p,T)}{\tau_{0V'}} = \frac{1/\tau_{0V'}}{1/\tau_{V'}(p,T)} = \frac{radiative \ rate}{total \ rate}$

Advantages of this representation

- Consistent description.
- Clear meaning of parameters.
- Does not depend on energy loss function (Bethe-Bloch or similar).

$$Y_{v',v''}(E,p,T) = Y_{v'}^{0}(E) \cdot R_{v',v''} \cdot \frac{\tau_{v'}(p,T)}{\tau_{0,v'}}$$

photons dep. energy

Ingredients

• Intrinsic fluorescence yield of most intensive transition: $Y_{V'}^0(E)$ $\left[\frac{photons}{dep. \, energy}\right]$

- Constant intensity ratios $R_{v',v''}$ relative to most intensive transition.
- Fraction of radiative transitions: $\frac{\tau_{V'}(\rho,T)}{\tau_{0_{V'}}} = \frac{1/\tau_{0_{V'}}}{1/\tau_{v'}(\rho,T)} = \frac{\text{radiative rate}}{\text{total rate}}$

⇒ All these parameters have been measured with the AirLight-Experiment ...

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Setup of	the AirLight Exp	periment				

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Setup of	the AirLight Exp	periment				

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Data Aco	uisition					

- Pulse height distributions.
- Difference-time spectra.
- Absolute scaler values.
- Coincident/free electron energy spectra.

- Pressure.
- Temperature.
- Relative Humidity.
- Free/Coincident event rates.
- High Voltage/Current.

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Data Aco	quisition					

- Pulse height distributions.
- Difference-time spectra.
- Absolute scaler values.
- Coincident/free electron energy spectra.

- Pressure.
- Temperature.
- Relative Humidity.
- Free/Coincident event rates.
- High Voltage/Current.

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Data Aco	quisition					

- Pulse height distributions.
- Difference-time spectra.
- Absolute scaler values.
- Coincident/free electron energy spectra.

- Pressure.
- Temperature.
- Relative Humidity.
- Free/Coincident event rates.
- High Voltage/Current.

	Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Data Acquisition	Data Aco	quisition					

- Pulse height distributions.
- Difference-time spectra.
- Absolute scaler values.
- Coincident/free electron energy spectra.

- Pressure.
- Temperature.
- Relative Humidity.
- Free/Coincident event rates.
- High Voltage/Current.

Pressure

- Pulse height distributions.
- Difference-time spectra.
- Absolute scaler values.
- Coincident/free electron energy spectra.

- Pressure.
- Temperature.
- Relative Humidity.
- Free/Coincident event rates.
- High Voltage/Current.

Motivation Fluorescence	Model AirLight Experiment	Simulation	Calibration	Analysis	Summary
Data Acquisition					

Pressure

Temperature

- Pulse height distributions.
- Difference-time spectra.
- Absolute scaler values.
- Coincident/free electron energy spectra.

- Pressure.
- Temperature.
- Relative Humidity.
- Free/Coincident event rates.
- High Voltage/Current.

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Data Acc	uisition					

Pressure

Temperature

Measurement of coincidences between electron- and photon-detectors:

- Pulse height distributions.
- Difference-time spectra.
- Absolute scaler values.
- Coincident/free electron energy spectra.

Relative Humdity

- Pressure.
- Temperature.
- Relative Humidity.
- Free/Coincident event rates.
- High Voltage/Current.

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Data Acq	uisition					

Relative Humdity

Free PMT rates

Measurement of coincidences between electron- and photon-detectors:

- Pulse height distributions.
- Difference-time spectra.
- Absolute scaler values.
- Coincident/free electron energy spectra.

- Pressure.
- Temperature.
- Relative Humidity.
- Free/Coincident event rates.
- High Voltage/Current.

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Data Acq	uisition					

Relative Humdity

Free PMT rates

- Pulse height distributions.
- Difference-time spectra.
- Absolute scaler values.
- Coincident/free electron energy spectra.

- Pressure.
- Temperature.
- Relative Humidity.
- Free/Coincident event rates.
- High Voltage/Current.

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Simula	ation					

GEANT4 Simulation (version 7.1) to determine:

- Electron energy spectra.
- Energy deposit in chamber.
- Photon angle distribution.
- Acceptance of photomultipliers.

0.0

υ

Important note

Measured energy spectrum is very much affected by multiple- or back-scattering effects in the collimator and in the gas!

1000

 $\frac{dN}{d\varepsilon} \propto \eta \cdot \varepsilon \cdot (\varepsilon_0 - \varepsilon)^2 \cdot F(Z, \eta) \cdot C(Z, \eta)$

1000

⇒ To obtain reasonable results the facrange parameter of the multiple scattering model has to be lowered to 0.01!

ວບບ

Measurement of the Air Fluorescence Yield with the AirLight Experiment

0 000

 ${}^{90}_{38}\text{Sr} \xrightarrow{t_{1/2} = 29 \text{ a}} {}^{90}_{39}\text{Y} \xrightarrow{t_{1/2} = 64 \text{ h}} {}^{90}_{40}\text{Zr}$

1500 2000 Enerav [keV] Tilo Waldenmaie

1500 2000 Electron Energy [keV]

Energy deposit in chamber

6

• Measurement of ²²Na Compton-spectrum $\frac{dN}{dE}(E)$.

• Convolution:
$$\frac{dN}{dE}(E) = \frac{dN_{bare}}{dE}(E) \otimes G(E, \sigma_E(E))$$

•
$$\mathsf{E} = \mathsf{a} + \mathsf{b} \cdot \mathsf{ADC}$$
, $\sigma_\mathsf{E}(\mathsf{E}) = \sqrt{\sigma_\mathsf{ped}^2 + \mathsf{c} \cdot \mathsf{E}}$

 Calibration constants a, b, c from fit to measured spectrum.

• Typical energy resolution:
$$\frac{\sigma_{\rm E}}{{\rm E}} \sim 10 \ \% \cdot \sqrt{\frac{1000 \ {\rm keV}}{{\rm E}}}$$

Idea: Why not use the ⁹⁰Sr-energy spectrum as reference spectrum?

Problem: Spectral shape at scintillator unknown due to scattering/energy loss in the chamber. Solution: Simulate energy spectra at scintillator for different pressures (with *facrange* < 0.01).

- Individual calibration of each run.
- Minimizing run-to-run fluctuations.

MC method

1000 1200 1400 160

800

Relative Calibration of the Photomultipliers

Detected photons: $N_{det} = \varepsilon_{\Omega} \cdot \varepsilon_{s} \cdot f_{cal} \cdot N_{0}$

•
$$\varepsilon_{s} = \int_{\lambda} \varepsilon_{QE}^{0}(\lambda) \cdot T(\lambda) \cdot \frac{dN}{d\lambda} d\lambda = const.$$

- ۰ Photoelectron cut: $0.5 \le p.e. \le 2.0$ (for calibration and measurement)
- ۰ Calibration relative to channel 3 ($f_{cal} \equiv 1$)

Estimation of absolute uncertainty:

- Discriminator threshold assumed to be stable.
- Events above 2 pe are mostly background.
- 12 % of the events are between discr. threshold and 0.5 pe.
- Less than 15 % of the events are below discr. threshold.

 $\Rightarrow N_{abs} = (1 + 12\% + 7.5\% \pm 7.5\%) \cdot N_{rel} = (1.195 \pm 0.075) \cdot N_{rel}$

Normalization error of QE-curve assumed to be \sim 10%:

 $\Rightarrow \text{ Calibration constant: } C_{abs} = (1 \pm 0.1) \cdot \frac{N_{abs}}{N_{rel}} = 1.195 \pm 0.141 \quad , \quad \frac{\Delta C_{abs}}{C_{abs}} = 12\%$

Estimation of absolute uncertainty:

Final absolute accuracies

 \Rightarrow Absolute accuracy of single bands \lesssim 15 %

• Reduction to \leq 10 % in future possible with calibration by Rayleigh scattering.

 $\Rightarrow N_{abs} = (1 + 12\% + 7.5\% \pm 7.5\%) \cdot N_{rel} = (1.195 \pm 0.075) \cdot N_{rel}$

Normalization error of QE-curve assumed to be \sim 10%:

$$\Rightarrow \text{ Calibration constant: } C_{abs} = (1 \pm 0.1) \cdot \frac{N_{abs}}{N_{rel}} = 1.195 \pm 0.141 \quad , \quad \frac{\Delta C_{abs}}{C_{abs}} = 12\%$$

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary	
Measurements & Data Analysis							

The complete dataset used for the analysis consists of \sim 50 runs with:

- Pure nitrogen
- Dry air (78% N₂, 21% O₂, 1% Ar)
- Mixture (90% N₂, 10% O₂)
- Nitrogen + water vapor
- Temperature: $\sim 20^{\circ}C$
- Pressure range: 2 hPa 1000 hPa
- Duration: 12 h 30 h (depending on gas and pressure)

Analysis philosophy:

- Step 1: Determination of quenching parameters and intensity ratios over whole energy range (\rightarrow max. statistics).
- Step 2: Determination of intensities (intrinsic yields) with fixed parameters of step 1 for energy sub-ranges.

Motivation

Summary

Analysis

Step 1: Determination of Quenching Parameters and Intensity Ratios

Problem

Overlapping bands within a single filter channel.

Solution

- Global analysis of all datasets (~ 50 runs).
- Constrained χ²-minimization with minimal set of parameters.
- Physical constraints for transitions from same vibrational level v':
- \rightarrow Same intrinsic lifetime $\tau_{0v'}$.
- \rightarrow Same quenching rate constants $Q_{v'}^{\chi}$.
- \rightarrow Same intrinsic yield $Y_{\nu'}^0$.
- \rightarrow Constant Intensity ratios $R_{\nu',\nu''}$.

Calibration

Analysis Summary

Time Spectra in Nitrogen at 20 hPa

Calibratio

Summary

Time Spectra in Nitrogen at 100 hPa

 Good relative description of the total fluorescence yield over whole pressure range within 4 %.

Additional constraint for lines:

$$\frac{1}{\tau_{v'}} = \frac{1}{\tau_{0v'}} \cdot \left(1 + p \cdot \underbrace{\frac{\tau_{0v'}}{kT} \sum_{x} f_x \cdot Q_{v'}^x(T)}_{1/p'(T)}\right)$$

 Fit to 1N(0,0) data yields only reasonable results under this condition.

Measurements with pure nitrogen at 30 hPa plus a variable amount of water vapor.

Res	ults	
-		$Q_{H_2O} [10^{-10} cm^3 s^{-1}]$
-	2P(0,v")	5.43 ± 0.12
	2P(1,v")	5.78 ± 0.17
	1N(0,v")	16.02 ± 1.09

Large quenching rate constant of 1N system due to polar character of ionized nitrogen?

 Motivation
 Fluorescence Model
 AirLight Experiment
 Simulation
 Calibration
 Analysis
 Summary

 Step 2: Energy Dependence of Intrinsic Yield
 Step 2
 Step

Re-analyzing sub-samples of 250 keV energy intervals with fixed quenching parameters and intensity ratios.

- Determination of deposited energy from GEANT4 simulations.
- No energy dependence of $Y_{\nu'}^0(E)$ in investigated range.
- \Rightarrow Number of photons is proportional to ionization energy loss.

Motivation	Fluorescence Model	AirLight Experiment	Simulation	Calibration	Analysis	Summary
Summa	ıry					
_						

Achieved so far ...

- Nitrogen fluorescence spectrum can be sub-divided into several (three) sub-spectra.
- Transitions of a sub-spectrum are connected by several relations.
- Fluorescence spectrum has been measured with the AirLight-Experiment and analyzed according to these relations.
- Global fit leads to consistent description of fluorescence yield with a minimal set of parameters.
- Fluorescence yield does not depend on energy.
- Absolute uncertainties of single nitrogen bands \leq 15 %.

Still to do ...

- Further reduction of absolute uncertainties down to \sim 10 %.
- Quantification of water vapor influence on shower reconstruction.

Ph.D. Thesis: http://www.auger.de/interna/docs/repository/FZKA7209_Report.pdf