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Questions to answer

@ Temperature-, pressure-dependence ?
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Fluorescence Model

Nitrogen Fluorescence Spectrum
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@ Rotational-vibrational spectrum.

@ Mainly three electronic-vibrational band systems between 300 nm and 400 nm:
2P(v/ = 0,v"), 2P(v/ = 1,v"), IN(v/ = 0, v"')
@ (Radiative) transition rate: --- =", —1— =

v/ —v!! TOy/

@ Constant intensity ratios between transitions within a vibrational band system.
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Fluorescence Model

Collisional Quenching

Additional radiationless deactivation channels via collisional energy transfer

1

Tey!

@ Total transition rate: - =
@ Quenching rate: =3 Q(T)-nx ,x= N2, Oz, Ar, H>O, ...
@ Quenching rate "constant": Q% (T) oc VT (- kinetic gas theory)

@ Number density: ny = ££ = kK. p

x|

4

Total transition rate

<1+p kTZfX

T))
1/p,

— linear pressure-dependence for constant mixing ratios and temperatures.
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Fluorescence Model

Fluorescence Yield

Fluorescence yield for any transition v/ — v/’ from same electronic-vibrational level

T, (P, T
Yy i (E,p,T) = y\?/(E) Ry yn - 1 (p,7) [ photons ]

Tyt dep. energy

Ingredients
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Fluorescence Model

Fluorescence Yield

Fluorescence yield for any transition v/ — v/’ from same electronic-vibrational level

7, (P, T
Yyr o (E,p, T) = YO (E) - Ry - TBD) - [ photons ]

Tyt dep. energy

Ingredients

photons
dep. energy

@ Intrinsic fluorescence yield of most intensive transition: YS/(E) [
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Fluorescence Model

Fluorescence Yield

Fluorescence yield for any transition v/ — v/’ from same electronic-vibrational level

T, (P, T
Yo (E,p, T) = YO,(E) - Ryr yor - BT [ o pholons ]

oy, dep. energy

Ingredients

photons
dep. energy

@ Intrinsic fluorescence yield of most intensive transition: YS/(E) [

@ Constant intensity ratios R, , relative to most intensive transition.
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Fluorescence Model

Fluorescence Yield

Fluorescence yield for any transition v/ — v/’ from same electronic-vibrational level

T, (P, T
Yor,n(Eyp, T) = YO (E) - Ry - T D) [ o photons ]

Oy dep. energy

Ingredients

photons
dep. energy

@ Intrinsic fluorescence yield of most intensive transition: YS/(E) [

@ Constant intensity ratios R, , relative to most intensive transition.

: ot e, Ty (0T) /7oy _ radiative rate
@ Fraction of radiative transitions: oy = A/r () = total rate
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Fluorescence Model

Fluorescence Yield

Fluorescence yield for any transition v/ — v/’ from same electronic-vibrational level

. 7, (P, T) photons
Yo v (E,p, T) = “Rys oy dep. energy

Ingredients

L . g p T photons
@ |Intrinsic fluorescence yield of most intensive transition: [70,9” energy]

@ Constant intensity ratios R, , relative to most intensive transition.

1/70,,  _ radiative rate
1/7,(p,T) —  total rate

@ Fraction of radiative transitions:

7, (P, T)
T V/

Advantages of this representation

@ Consistent description.
@ Clear meaning of parameters.

@ Does not depend on energy loss function (Bethe-Bloch or similar).

Measurement of the Air Fluorescence Yield with the AirLight Experiment Tilo Waldenmaier



Fluorescence Model

Fluorescence Yield

Fluorescence yield for any transition v/ — v/’ from same electronic-vibrational level

T, (P, T
YV’,V”(E7P= T):Y\Q’(E)'va’v//~ v (P.T) [ photons ]

Oy dep. energy

Ingredients

@ |Intrinsic fluorescence yield of most intensive transition: Y7, (£) [ phowons ]

dep. energy

@ Constant intensity ratios R, , relative to most intensive transition.

@ Fraction of radiative transitions: 7

(p.T) _ 1/70yr  __ radiative rate
TO V/

— /7, (p,T) —  total rate

= All these parameters have been measured with the AirLight-Experiment ...
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Motivation Fluorescence AirLight Experiment Simulation Calibration Analysis

Setup of the AirLight Experiment
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AirLight Experiment

Setup of the AirLight Experiment

N\
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AirLight Experiment
Setup of the AirLight Experiment

“Sr Source
(37 Mbg)

Tilo Waldenmaier
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“Sr Source
(37 Mbgq)

(Interference-) Filter
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Filter Efficiencies
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etup of the AirLight Experiment
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tivation

Data Acquisition

5 AirLight Data Aquisition 3.5

AirLight Experiment
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Simulation

Measurement of coincidences between
electron- and photon-detectors:

@ Pulse height distributions.
@ Difference-time spectra.
@ Absolute scaler values.

@ Coincident/free electron energy
spectra.

Monitoring of environmental conditions:
@ Pressure.
@ Temperature.
@ Relative Humidity.

Measurement of the Air Fluorescence Yield with the AirLight Experiment

@ Free/Coincident event rates.
@ High Voltage/Current.
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tivation

Data Acquisition

5 AirLight Data Aquisition 3.5

£DC | TOC Histograms.

AirLight Experiment
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Simulation

Measurement of coincidences between
electron- and photon-detectors:

@ Pulse height distributions.
@ Difference-time spectra.
@ Absolute scaler values.

@ Coincident/free electron energy
spectra.

Monitoring of environmental conditions:
@ Pressure.
@ Temperature.
@ Relative Humidity.

@ Free/Coincident event rates.
@ High Voltage/Current.
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tivation

Data Acquisition

AirLight Experiment Simulation

Measurement of coincidences between
L wocn electron- and photon-detectors:

ovectory oriDaten |
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e R ) R
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@ High Voltage/Current.
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tivation

Data Acquisition

AirLight Experiment
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Simulation

Measurement of coincidences between
electron- and photon-detectors:

@ Pulse height distributions.
@ Difference-time spectra.
@ Absolute scaler values.

@ Coincident/free electron energy
spectra.

Monitoring of environmental conditions:
@ Pressure.
@ Temperature.
@ Relative Humidity.

@ Free/Coincident event rates.

@ High Voltage/Current.

Measurement of the Air Fluorescence Yield with the AirLight Experiment

Tilo Waldenmaier



ght Experiment
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Pressure

Measurement of coincidences between
electron- and photon-detectors:

@ Pulse height distributions.
@ Difference-time spectra.
@ Absolute scaler values.

@ Coincident/free electron energy
spectra.

Monitoring of environmental conditions:
@ Pressure.
@ Temperature.
@ Relative Humidity.
@ Free/Coincident event rates.
@ High Voltage/Current.

Tilo Waldenmaier
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Measurement of coincidences between
electron- and photon-detectors:

@ Pulse height distributions.
@ Difference-time spectra.
@ Absolute scaler values.

e e ] P @ Coincident/free electron energy
Pressure Temperature spectra.

Monitoring of environmental conditions:
@ Pressure.
@ Temperature.
@ Relative Humidity.
@ Free/Coincident event rates.
@ High Voltage/Current.
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Measurement of coincidences between
electron- and photon-detectors:

@ Pulse height distributions.
@ Difference-time spectra.
@ Absolute scaler values.

@ Coincident/free electron energy
spectra.

Monitoring of environmental conditions:
@ Pressure.
@ Temperature.
@ Relative Humidity.
@ Free/Coincident event rates.
@ High Voltage/Current.
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Measurement of coincidences between
electron- and photon-detectors:

@ Pulse height distributions.
@ Difference-time spectra.
@ Absolute scaler values.

@ Coincident/free electron energy
spectra.

Monitoring of environmental conditions:
@ Pressure.
@ Temperature.
@ Relative Humidity.
@ Free/Coincident event rates.
@ High Voltage/Current.
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Measurement of coincidences between
electron- and photon-detectors:

@ Pulse height distributions.
@ Difference-time spectra.
@ Absolute scaler values.

@ Coincident/free electron energy
spectra.

Monitoring of environmental conditions:
@ Pressure.
@ Temperature.
@ Relative Humidity.
@ Free/Coincident event rates.
@ High Voltage/Current.
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Simulation

GEANT4 Simulation (version 7.1) to
determine:

@ Electron energy spectra.

@ Energy deposit in chamber.

@ Photon angle distribution.

@ Acceptance of photomultipliers.
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Simulatio
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90 g 0047 — Detected at 5 hPa
0+ Sr 2826 a L — Detected at 250 hPa
% r — Detected at 1000 hPa
ﬁ 100 R 90 §0»03f — Primary Spectrum
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Important note
Measured energy spectrum is very much affected by
multiple- or back-scattering effects in the collimator and
in the gas!
= To obtain reasonable results the facrange
parameter of the multiple scattering model has to
be lowered to 0.01!
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ngle Distribution & Acceptance
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Energy Calibration (1. 22Na Method)

)
H — Bare #
> are ““Na compton spectrum 22N
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Energy Calibration (2. Monte Carlo Method)

Idea: Why not use the 20Sr-energy spectrum as reference spectrum?
Problem: Spectral shape at scintillator unknown due to scattering/energy loss in the chamber.
Solution: Simulate energy spectra at scintillator for different pressures (with facrange < 0.01).

Pressure [hPa]
10*

g 0'95 —e— Measured (10 hPa) z oN,
5 08 ~—— Simulated (10 hPa) 2 = -0, (30:10)
g E —— Measured (500 hPa) « LAR
S, 0.7 ~— Simulated (500 hPa) 10?
I E —e— Measured (950 hPa)
g 0.6 = simulated (950 hPa)
€ o5t
L F 10
0.4
03E
= 200 400 600 800 1000 1200 1400 1600 1800 2000
0.2 Energy [keV]
ﬂ Pressure [hPa]
0.1 &y 10°
= *Biq = N,
% 500 1000 1500 2000 g 7, (010
Energy [keV]
10%
Advantages:
@ Covering the whole energy range.
10
@ |Individual calibration of each run.
@ Minimizing run-to-run fluctuations. .

By | | | | | I | |
200 400 600 800 1000 1200 1400 1600 1800 2000
Energy [keV]
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Calibration

Relative Calibration of the Photomultipliers
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Calibration

Relative Calibration of the Photomultipliers

1400

Channel 3

1200

Counts per bin
S [<2] @ E
(=] o o [=]
o (=] o o
T T T T T T T
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Q
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Photoelectrons [pe]
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@ Detected photons: Nget = €q-es - feal - No

Rate [kHz]

o
=]

@ &= [, e2:(N) - T(A) - N dX = const.

N
S

Date Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

08/01 1.13 £ 0.03 0.97 +0.03 1.10 £ 0.03 1.00 £ 0.00 1.17 £0.04 1.08 £ 0.03
08/24 1.14 +0.03 0.97 +0.03 1.12 £0.03 1.00 £ 0.00 1.16 £ 0.04 1.07 £ 0.03
09/23 1.13+0.03 0.97 +0.03 1.12 £ 0.03 1.00 £ 0.00 1.17 £ 0.04 1.07 £ 0.03
10/27 1.14 +0.03 0.97 4+ 0.03 1.12 £ 0.03 1.00 £ 0.00 1.16 £ 0.04 1.08 £ 0.03
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Calibration

Systematic Errors

é 140077 annel
Relative Uncertainty Eoof Channel 3

& 12000
Relative calibration f;: ~3% gmooi
Photoelectron cut e¢y: ~2% E
Spectral efficiency es: 4—8% 800~
Acceptance eq: ~ 0.4 % sool-
Total: 54-88% s

200:*15'0% 11.6 %
Gg 05 ) :

1.5 2
Estimation of absolute uncertainty: Photostectrons [pe]

@ Discriminator threshold assumed to be stable.

@ Events above 2 pe are mostly background.

@ ~ 12 % of the events are between discr. threshold and 0.5 pe.

@ Less than 15 % of the events are below discr. threshold.

= Naps=(14+12% +7.5%+7.5%) - N = (1.195 £ 0.075) - Ny

Normalization error of QE-curve assumed to be ~ 10%:

= Calibration constant: C,,s = (1 £0.1) - 'be/s =1.195+0.141 | % =12%
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Calibration

Systematic Errors

é 140077 annel
Relative Uncertainty Eoof Channel 3

& 12000
Relative calibration f;: ~3% gmooi
Photoelectron cut e¢y: ~2% E
Spectral efficiency es: 4—8% 800~
Acceptance eq: ~ 0.4 % sool-
Total: 54-88% s

200:*15'0% 11.6 %
% 05 ) :

1.5 2
Estimation of absolute uncertainty: Photostectrons [pe]

C [ o
Final absolute accuracies

= Absolute accuracy of single bands < 15 %

@ Reduction to < 10 % in future possible with calibration by Rayleigh scattering.

= Naps=(1+12% +7.5%£7.5%) - Ny = (1.195 £ 0.075) - Ny

Normalization error of QE-curve assumed to be ~ 10%:

= Calibration constant: C,,s = (1 £0.1) - 'be/s =1.195+0.141 | % =12%
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Measurements & Data Analysis

The complete dataset used for the analysis consists of ~ 50 runs with:
@ Pure nitrogen

@ Dry air (78% N, 21% O2, 1% Ar)
Mixture (90% Na, 10% O5)
Nitrogen + water vapor
Temperature: ~ 20°C

Pressure range: 2 hPa - 1000 hPa

Duration: 12 h - 30 h (depending on gas and pressure)

Analysis philosophy:

Step 1: Determination of quenching parameters and intensity ratios over whole energy
range (— max. statistics).

Step 2: Determination of intensities (intrinsic yields) with fixed parameters of step 1 for
energy sub-ranges.
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Intensity Ratios

Filter Channels

J|

=™ e, | Overlapping bands within a single filter channel.
Zoost rerence e
50.04— .

0.03

002 @ Global analysis of all datasets

ok (~ 50 runs).

@ Constrained x2-minimization with
minimal set of parameters.

Time spectra in 380 nm filter channel
@ Physical constraints for transitions from

same vibrational level v’:

i A T AN
300 320 340 360 380

300 220
Wavelength [nm]

—— 2P(0.2):T=9.242004ns o
2P(1,3):1=415+ 005 ns — Same intrinsic lifetime TOy! -

——————— Total Signal @ 300 hPa

Counts per bin
E‘a

— Same quenching rate constants Q.

| o
mJ’f‘ﬁM ki ‘”’“’w””f}"’%’w*ﬁw — Same intrinsic yield Y9,
e — Constant Intensity ratios Ry .
[ 20 40 60 80 100 T.mel[znos]

———————————————————
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Reconstructed Signal in the M-UG6 channel:

g F
> C e N,
§ 20 = N,:0,(90:10)
o s AR
£ 15
£ r
(3] C
g 10—
Q [
S ¢
T 5
o dt-r-1-F-f---4---tr b T
-5
10
I T S [ T S SO S ST SN ST N |
0 200 400 600 800 1000

Pressure [hPa]

» Good relative description of the total fluorescence yield over whole pressure
range within 4 %.
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Nitrogen Quenching Results

»
2P(0,v")
e 22 2P(0V"):1, = 38.93 +0.29 ns
‘© 2F of R —, 28 +0.84 hPa
E 1/t - ~me N+ 0, 51+0.24 hPa
E 1.8 o 0 - 4 DryAir :p'=15.30 £0.13 hPa
216 ;
T AIR i
S 14 &
g12
@
|
0.8
0.6
0.4
0.2
Ll | L
00 200 400 600 800 1000,
Pressure [hPa]
1N(0,0)
T 9F
2 F . & IN(OV'):T, = 65,22+ 18.68 ns
o [ o N, 24+038hPa
E 25 ] v -m- N, +0,:p'=123:036hPa
S oo v A Diy A 1 p'=1.20+0.36 hPa.
=2 b o ¥
T 2o
S [ of
2 b oos|
S 15
& 150 o] 8 .
T S s
it L.
P S S E I B
00 200 400 600 800 1000
Pressure [hPa]

2P(1,v")
‘g 25 2P(LV'):T, = 32,882 0.46 ns
@ [ ooz
E I £ m
o 2 4 Dry Air : ' =15.45+0.26 hPa
5 r T
= r i
s L
s I
5150
5 L :
e r R i i
1 s o .
L " e B
L . R
05 T
P L
600 800 1000
Pressure [hPa]

Additional constraint for lines:
I CTov! X
TV T Toy (1 tPT ;fx QV’(T))

1/p'(T)

» Fit to 1N(0,0) data yields only
reasonable results under this
condition.

Tilo Waldenmaier
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Nitrogen Quenching Results

2P(0,v") 2P(1,v")

? 2.2 2P(0V"):1, = 36.93 2029 ns "Z 25 2PV, 23288046 1
o 2F o o =N, p'=9228:084hPa ‘o e N,  p'=4325:069hPa
E 1/t - m- N,+0,:p'=27.51+024 hPa E . - N,+0,:p'=23.40+ 038 hPa
B 18 o 0 = 4 DryAir :p'= 1630 £0.13 hPa 8 2 4 Dry Air : ' =15.45+0.26 hPa
ERN] 7 b - !
] 1.4 AlIvR g B
g 15
5 1.2 S
3 8
- 4

0.8

0.6

0.4

0.2

L
00 200 400 600 800 1000,
Pressure [hPa]
1N(0,0)
B INOV):T, = 6522+ 18.68 i f i .
< e Additional constraint for lines:
g -m- N, +0,:p' =123£0.36 hPa
3 4 Dy AIr :p'= 1202 0.36 hPa 1 1 Oy ¥
3 —_ = . . E .
5 T T0y/ (1 +p kT fi Ov’ (T)
8 X
3
o]
2P(0,v") 2P(1,v") 1N(0,V')
0 [ns] 389+030 329+050 6524187

Qv, [10~"YemPs='] 0.1140.00 0.29-+0.00 5.00+0.17
Qo, [10~"%cmPs~'] 276+0.01 270+0.03 524+0.79
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Analysis

The Effect of Water Vapor

2P(0,v") 2P(1,v")

E = 2Py =

E £,=20.00+0.45 ns (p, =30 hPa) 2 +

E Quo=(578+0.17) x 10 et 3 +

E i

= + &

E 8

E i<

E h=3

E ]

E 2 =2

= —— 2P(OV"): —— IN(OV"):

E =28.72£035 ns (p, =30 hPa) ¥=254£008ns (p, =30hPa)

E Q0= (643+0.12) x 10 0 emist Qy0 = (16.02£1.09) %10 cst

E\\\\\\\\\\\\\\\\\\\\\\\\\ o b e e b e e ey |
o 2 2

8 10 12 8 10 12
H,O Partial Pressure [hPa] H,O Partial Pressure [hPa]

Measurements with pure nitrogen at 30 hPa plus a variable amount of water vapor.

Q0 [10-cmPs~T]

2P(0,V) 543 L£0.12
2P(1,v) 5.78 + 0.17
1N(0,v") 16.02 & 1.09

Large quenching rate constant of 1N system due to polar character of ionized
nitrogen?
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Step 2: Energy Dependence of Intrinsic Yield

Re-analyzing sub-samples of 250 keV energy intervals with fixed quenching
parameters and intensity ratios.

S
2 —.— N, oo NyO, (90:10) g Ajr 400 hPa
2 i
= =1 e FY

g === + 3 ] IN(0,0)
il SE——— Mo SRR S S S g “““““
- I
2 -
> L
o
2
g | S S SO SR G
- e bl

I —e—

,,,,,, et e B g .. 2P(1,0)
bR A N~ MO s e = ,_;_" ,_”4‘
| S Y

500 1000

1500 2000
Electron Energy [keV]

/(p, T N.
Yv’,v”(E»pv T = Y\?/(E) “Ryr %ﬁ:,) = ?Zp

@ Determination of deposited energy from GEANT4 simulations.
@ No energy dependence of Y‘f’, (E) in investigated range.

= Number of photons is proportional to ionization energy loss.
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Fluorescence Spectrum in Air at 400 hPa and -11°C

> - _ ~ 110
% 16 * This work - Dry air at p =400 hPa, T =-11°C
E T O Nagano e
9 14? N
st L .
o 12— 4 s
o [ 2 T
Q2 10— ¢ L
> [ =&
8 g & ,
= 8 & f
5] - g
7 {} 8 5 3
o = S S +
o C (- z <
T 4 S & &

- o

2 ?

7\ Il Il ‘ 1111 ‘ L1 1l ‘ 1111 ‘ 11l ‘ I ‘ 111l 111 ‘ I L1
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— Good agreement with values of Nagano et al. [Astroparticle Physics 22 (2004) pp. 235 - 248]
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Fluorescence Spectrum in Air at 400 hPa and -11°C

B Relative intensities with respect to 2P(0,0)

3
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Fluorescence Spectrum in Air at 400 hPa and -11°C

Relative intensities with respect to 2P(0,0)

3
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Achieved so far ...

@ Nitrogen fluorescence spectrum can be sub-divided into several (three)
sub-spectra.

@ Transitions of a sub-spectrum are connected by several relations.

@ Fluorescence spectrum has been measured with the AirLight-Experiment and
analyzed according to these relations.

@ Gilobal fit leads to consistent description of fluorescence yield with a minimal set
of parameters.

@ Fluorescence yield does not depend on energy.
@ Absolute uncertainties of single nitrogen bands < 15 %.

Still to do .

@ Further reduction of absolute uncertainties down to ~ 10 %.

@ CQuantification of water vapor influence on shower reconstruction.

Ph.D. Thesis: http://www.auger.de/interna/docs/repository/FZKA7209_Report.pdf
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