Rescattering effects and Calculation of the survival factor in pp scattering processes

XXXV International Symposiuum on Multiparticle Dynamics August 9-15, 2005

Alexander Kupčo

Institute of Physics, Center for Particle Physics, Prague

Hard diffraction - factorization breaking

- Pomeron model:
 - diffraction exchange of colorless objects - Pomerons
 - central interaction is then explained as a hard scattering of Pomeron constituents ⇒ Pomeron structure functions:

$$\sigma_{diff} \propto P_{(\mathbb{P}|p)}(x) \cdot F^{D}_{(A|\mathbb{P})}(\beta, Q^2) \cdot |\mathcal{M}|^2$$

Factorization breaking observed between Hera and Tevatron data

Survival probability

A. Kupčo, Institute of Physics, Prague

Survival probability

$$S^{2} = \frac{\int |\mathcal{A}_{hard} + \mathcal{A}_{rescat}|^{2}}{\int |\mathcal{A}_{hard}|^{2}} = \frac{\int d\vec{b} |\mathcal{A}_{hard}(s,b)|^{2} \underbrace{|1 + i\mathcal{A}_{el}(s,b)|^{2}}_{\int d\vec{b} |\mathcal{A}_{hard}(s,b)|^{2}}$$

- hard amplitude \mathcal{A}_{hard}
 - factorization of the *t*-dependence at small $t(\equiv -p_T^2)$

 $\mathcal{A}_{hard}(\vec{p}_{T1}, \vec{p}_{T2}, \ldots) = \beta_{hard}(t_1)\beta_{hard}(t_2)A_0(\sqrt{s}, y, M)$

- \Rightarrow survival probability factor independent on the hard interaction
 - Key ingrediencies:
 - models of elastic scattering amplitude \mathcal{A}_{el}
 - models of transverse distribution of nucleon constituents

Soft scattering in pomeron based model

Khoze, Martin, Ryskin Eur. Phys. J. C18 (2000) 167

- extension to Donnachie-Landshoff: $\alpha_{\mathbb{P}}^{\mathsf{eff}}(t) = 1.08 + 0.25t$
- adding 2- π loop corrections to pomeron trajectory
- retrieving *s*-channel unitarity
- 2-channel eikonal approach
- high-mass M_X single and double dissociation
- fitted on available σ_{tot} and $d\sigma_{el}/dt$ data
 - good description of data

A. Kupčo, Institute of Physics, Prague

Predictions for survival probability

		Survival probability S^{-2} for:				
\sqrt{s}	2b	SD	SD	CD	CD	DD
(TeV)	(GeV^{-2})	(FPS)	(cal)	(FPS)	(cal)	
0.54	4.0	0.14	0.13	0.07	0.06	0.20
	5.5	0.20	0.18	0.11	0.09	0.26
	7.58	0.27	0.25	0.16	0.14	0.34
1.8	4.0	0.10	0.09	0.05	0.04	0.15
	5.5	0.15	0.14	0.08	0.06	0.21
	8.47	0.24	0.23	0.14	0.12	0.32
14	4.0	0.06	0.05	0.02	0.02	0.10
	5.5	0.09	0.09	0.04	0.03	0.15
	10.07	0.21	0.20	0.11	0.09	0.29

$$|\mathcal{M}(b_t)|^2 \propto \exp(-b_t^2/nb)$$
$$n_{(CC,SD,DD)} = 4, 6, 8$$

for p + gap + H + gap + p

$$S^2 \approx 0.02 - 0.04$$

• updated number from Kaidalov et al., Eur. Phys. J. C33(2004) 261:

 $S^2 \approx 0.026$ with about $\pm 50\%$ uncertainty

• Petrov, Ryutin: 3 pomerons fit, $S^2 \approx 0.07$ (JHEP 0408:013, 2004)

A. Kupčo, Institute of Physics, Prague

Transverse structure of proton at large \sqrt{s}

Frankfurt, Strikman, Weiss, Zhalov hep-ph/0412260

• probed in hard exclusive photoproduction processes

$$\frac{\mathrm{d}\sigma^{\gamma^{\star}p\to J/\Psi p}}{\mathrm{d}t} \propto \left[F_g(x,t)\right]^2, \ x \sim M_{c\bar{c}}^2/W^2$$

 $F_g(x,t) \dots \text{ two-gluon form factor}$ $F_g(x,b) = \int \frac{\mathrm{d}^2 \vec{k_t}}{(2\pi)^2} F_g(x,t \equiv -k_t^2) e^{-i\vec{k_t}\cdot\vec{b}}$

Centrality of hard interactions

inelastic events

$$P_{in}(s,b) = \frac{2 \operatorname{Im} \mathcal{A}_{el}(s,b) - |\mathcal{A}_{el}(s,b)|^2}{\sigma_{in}(s)}$$

"central"

- $\mathcal{A}_{el}(s,b)$ from Islam et al. Mod. Phys. Lett. A18 (2003) 743
- A. Kupčo, Institute of Physics, Prague

• hard dijet production

$$P_2(b) = \int \mathrm{d}\vec{b}_1 \mathrm{d}\vec{b}_2 \,\delta(\vec{b} - \vec{b}_1 - \vec{b}_2) \,F_g(b_1) F_g(b_2)$$

• 2 binary hard dijet productions

$$P_4(b) = \frac{\left[P_2(b)\right]^2}{\int \mathrm{d}\vec{b'} \left[P_2(b)\right]^2}$$

Gap Survival at LHC

 $\mathsf{p} + \mathsf{p} \to \mathsf{p} + \mathsf{gap} + \mathsf{H} + \mathsf{gap} + \mathsf{p}$

need to exchange 2 hard gluons:

$$S^{2} = \int \mathrm{d}\vec{b} \underbrace{|1 + i\mathcal{A}_{el}|^{2}}_{\exp[-\Omega]} P_{4}(b)$$

• effective values of m_g^2 decreases with decreasing x \Rightarrow drop is actually smaller than for fixed value of m_g^2 • results in reasonable agreement with KMR Factorization breaking - Good-Walker picture

Bialas, Acta Phys. Polon. B33 (2002) 2635

• diffractive dissociation treated as a consequence of absorption of the particle waves

$$\langle \mathsf{jets}|T|\gamma^*\rangle = \epsilon \langle \mathsf{hard}|T|\mathsf{hard}\rangle$$
$$\langle P' + \mathsf{jets}|T|P\rangle = \epsilon \langle \mathsf{hard}|T|\mathsf{hard}\rangle (1 - \langle P|T|P\rangle)$$

- suppression factor:
 - $|1 \langle P|T|P \rangle|^2$
- using Donnachie-Landshoff parametrization of the elastic amplitude

Dijets at Tevatron with 0, 1, and 2 rapidity gaps

Bialas, Peschanski, Phys. Lett. B575 (2003) 30

$$R_{1|0}/R_{2|1} = R_{1|0}^2/R_{2|0} \approx 0.25$$

Kaidalov, Khoze, Martin, Ryskin Phys. Lett. B559 (2003) 235

- same formula
- $R_{1|0}/R_{2|1} pprox 0.2$

similar to other predictions by

- Goulianos
- Gotsman-Levin-Maor
- Soft color interactions model

 $R_{exp} \approx 0.23 \ (\pm 30\%)$

Soft color interactions (SCI)

- after development of partonic shower, additional soft color interaction can occur between partons with probability P
- from fits of F_D^2 data

 $P \approx 0.5$

Enberg, Ingelman, Timneanu, Phys. Rev. **D64** (2001) 114015

Brodsky, Enberg, Hoyer, Ingelman, Phys. Rev. **D71** (2005) 074020

• based on Lund string model

A. Kupčo, Institute of Physics, Prague

SCI - Tevatron and LHC predictions

Process	Experiment	Ratio [%]		
		Observed	SCI	
W	CDF [13]	1.15 ± 0.55	1.2	
Z	DØ [14]	$1.44_{-0.54}^{+0.62}$	1.0^{\dagger}	
$bar{b}$	CDF [35]	0.62 ± 0.25	0.7	
J/ψ	CDF [36]	1.45 ± 0.25	1.4^{\dagger}	
dijets	CDF [10]	0.75 ± 0.10	0.7	
dijets	DØ [12]	0.65 ± 0.04	0.7	

[†] Predictions made in advance of the data.

- Unified description of diffractive and non-diffractive final states
- \Rightarrow no survival factors
- very good desciption of available diffractive data from Hera and Tevatron
- at LHC, gives orders of magnitude lower σ for exclusive Higgs production
 - leading protons with $x_F > 0.9$: $\sigma \sim 0.19 \, {\rm fb}$
 - requiring gaps: $\sigma \sim 3 \times 10^{-4}$ fb (KMR: 2 fb)
- in SCI model, it is extremely unlikely to create exclusive state

Survival probability - $\Delta \phi_{p\bar{p}}$ dependence

- rich structure in $\Delta \phi$
 - V. A. Khoze, A. D. Martin and M. Ryskin, Eur. Phys. J. **C24** (2002) 581
- the same origin as the diffractive dips in $d\sigma_{el}/dt$
- the position of the dip is sensitive to the details of the model
- This is a general feature of all pomeron based models

There is no $\Delta\Phi$ dependence in SCI model

DØ Forward Proton Detector

Kupčo, Peschanski, Royon, Phys. Lett. B606 (2005) 139

• Forward Proton Detector installed by DØ provides an unique opportunity to measure the $\Delta\phi$ dependence of the hard diffractive production

Dipole-Quadrupole combination D-IN & Q-IN, D-IN & Q-OUT D-IN & Q-UP or D-IN & Q-DOWN - asymmetric cuts in *t*

A. Kupčo, Institute of Physics, Prague

Quadrupole-Quadrupole combination same side, opposite side middle (90°) configuration - symmetric cuts in t

Results for double diffractive dijet production

- dijet production with $p_T > 5 \, {\rm GeV}$ at Tevatron
 - upper plots: $|t_p| > 0.6, |t_{\bar{p}}| > 0.1 \,\text{GeV}^2$
 - lower plots: $|t_p| > 0.5, |t_{\bar{p}}| > 0.5 \,\mathrm{GeV}^2$

• Pomeron models

- POMWIG interfaced with the calculation of survival probability

Config.	model	$N_{90}/2 \times N_{SS}$	N_{OS}/N_{SS}
Quad.	SCI	1.3	1.1
+	P-Model 1	0.36	0.18
Dip.	P-Model 2	0.47	0.20
Quad.	SCI	1.4	1.2
+	P-Model 1	0.14	0.31
Quad.	P-Model 2	0.20	0.049

A. Kupčo, Institute of Physics, Prague

Summary

- Various approaches to the explanation of the factorization breaking in diffractive events between Hera and Tevatron give good description of available data.
- This is not surprising, since the formulas for survival factors are similar.
- Discrepancies are at LHC larger, but still not far away:

 $S_{p+H+p}^2 \sim 0.02 - 0.05$

- The only exception is Soft Color Interaction model, which gives orders of magnitude lower cross section in case of central exclusive production
- Azimuthal correlations of scattered protons in hard DPE are sensitive to the gap production mechanism and can be used to distinguish different models of factorization breaking.
- We showed, that DØ FPD is suitable for such measurement.