NA49 results on hadron production: indication of the onset of deconfinement ?

Benjamin Lungwitz

Phase diagram

- Phase boundary separating hadron gas and QGP
- T=0: 1st order phase transition
- $\mu_b = 0$: a smooth cross over
- Critical point (2nd order phase transition)
- Chemical freeze out points from Hadron Gas Model, Becattini et al.
- Is the onset of deconfinement seen in data ?

Heavy ion experiments

Various heavy ion experiments cover a broad energy range:

- AGS (E...)
- SPS (WA..., NA..., NA49)
- RHIC (Star, Phobos, Phenix, Brahms)
- LHC (Alice, CMS, Atlas)

collision energy

Benjamin Lungwitz

NA49 experiment

- Large detector acceptance for charged hadrons
- Energy range: 20-158A GeV
- Different collision systems: p+p, C+C, Si+Si, Pb+Pb, ...
- Centrality selection with veto calorimeter

Benjamin Lungwitz

IKF Universität Frankfurt

158A GeV

Si+Si

Particle ID

- dE/dx in TPCs and TOF (mid-rapidity) for π[±], K[±], p,d
- decay topology, invariant mass for K⁰_s,Λ,Ξ,Ω,φ,...

Benjamin Lungwitz

Compilation of NA49 data on hadron production: http://na49info.cern.ch/na49/Archives/Data/NA49NumericalResults/na49 compil.pdf

Benjamin Lungwitz

IKF Universität Frankfurt

6

Pions: energy dependence

p+p and central Pb+Pb (Au+Au) collisions

p+p:

- π/N_w rises linearly with F Pb+Pb:
- low energies: π/N_w smaller than in p+p
- high energies: π/N_w larger

Possible explanation:

- Pion absorption in baryonic medium
- Pion enhancement in QGP (more degrees of freedom)
- Onset of deconfinement at ≈30A GeV ("Kink") ?

7

Benjamin Lungwitz

Pion yield per N_w:

• Absorption and enhancement rises quickly with system size

Benjamin Lungwitz

Kaons: energy dependence

- K^+/π^+ : maximum at 30A GeV ("Horn")
- K^{-}/π^{-} : rises for lower energies faster than for higher energies

Benjamin Lungwitz

Kaons: energy dependence

- K^+/π^+ : maximum at 30A GeV ("Horn")
- K⁻/ π ⁻: rises for lower energies faster than for higher energies
- Shown hadronic models fail to describe data

Benjamin Lungwitz

F. Wang, J.Phys.G27:283-300,2001

- Fast increase followed by a saturation for central collisions
 - Canonical suppression in small systems ?

Benjamin Lungwitz

F. Wang, J.Phys.G27:283-300,2001

- Fast increase followed by a saturation for central collisions
 - Canonical suppression in small systems ?
- Increase with centrality, no saturation at AGS for centrality selected Au+Au collisions
- Similar behaviour of K⁻ (not shown here)

Benjamin Lungwitz

Kaons: system size dependence (2) $\sqrt{s_{NN}}=200 \text{ GeV}$ Pb+Pb (Au+Au):

- RHIC: Cu+Cu = Au+Au at same N_p
- Earlier saturation with centrality for higher energies

Benjamin Lungwitz

Structure in energy dependence of φ/π ?

- Fast increase with N_w in central collisions
- Difference between central and peripheral collisions with same N_w

Benjamin Lungwitz

- Maximum of Λ/π at low SPS energies in A+A collisions
 - in agreement with Hadron Gas Model (Redlich et al.)
- System size dependence:
 fast increase from p+p to Si+Si, then saturation

Benjamin Lungwitz

Ξ and Ω - hyperons

Benjamin Lungwitz

Strangeness carriers

- Strangeness conserved
- "Horn" also seen in s/π and \bar{s}/π

- strangeness carriers:
 - K^{-}, K^{0}
 - Λ (incl. Σ^0)

odel, $- \Xi, \Omega$ $- \Sigma^{\pm}$

• anti-strangeness carriers:

 $- K^+, K^0$

- $\overline{\Lambda} (\operatorname{incl} \overline{\Sigma}{}^{0})$
- Ξ, Ω

black: measured (at least partially)

 $-\Sigma^{\pm}$

red: estimated by symmetries or empirical factors

• Data not described by hadronic models

• Consistent with phase transition M. Gazdzicki, M. Gorenstein, Acta Phys.Polon.B30:2705,1999

Benjamin Lungwitz

Multiplicity fluctuations

158A GeV, $\sqrt{s_{NN}}=17.3$ GeV

- Increase from central to peripheral collisions (also observed in other systems)
- $Var(h^+)/\langle h^+ \rangle \approx Var(h^-)/\langle h^- \rangle$ $\langle Var(h^\pm)/\langle h^\pm \rangle$
- To come:
 - C+C and Si+Si
 - Energy dependence

Benjamin Lungwitz

Transverse mass spectra

 $m_T = \sqrt{p_T^2 + m^2}$

Commonly used measures:

• Inverse slope parameter T

$$\frac{d^2 n}{m_T \, dy \, dm_T} = C \cdot \exp\left(-\frac{m_T}{T}\right)$$

- Mean transverse mass $\langle m_T \rangle$
- Determined by:
- Freeze-out- temperature
- Transverse expansion of the fireball

Benjamin Lungwitz

Energy dependence of T(K)

- A+A: T(K^{+/-}) constant for SPS energies ("Step")
 - Indication for phase transition (like heating curve of water)
 - Consistent with hydro calculation with 1st order phase transition
- p+p: Step not seen

What about other particles ?Benjamin LungwitzIKF Universität Frankfurt

Energy dependence of $< m_T >$

- Kaons: $\langle m_T \rangle$ similar to T
- "Step" also seen for other particles

Benjamin Lungwitz

Mass dependence of T $158A \text{ GeV}, \sqrt{s_{_{NN}}}=17.3 \text{ GeV}$

spectra fitted in intermediate m_{T} region

WA97: Eur.Phys.J.C14:633-641(2000)

- T increases with particle mass
 - Collective expansion more important for heavy particles
- Increase is stronger for larger systems

Benjamin Lungwitz

Summary

- NA49: Systematic studies of system size and energy dependence of various hadronic observables
- System size and centrality dependence:
 - Early saturation with system size for central collisions
 - No N_w scaling
- Anomalies in energy dependence of various observables in A+A collisions
 - pions: "Kink"
 - strangeness to pion ratio: "Horn"
 - inverse slope parameter and mean transverse mass: "Step"

Not described by hadronic models but consistent with onset of deconfinement at low SPS energies !

Backup

Benjamin Lungwitz

Phase transition in strongly interacting matter

- Hadron gas: color neutral objects, confinement
- Quark-Gluon-Plasma: colored objects, deconfinement
- Heating / compression of hadronic medium: phase transition is expected

Benjamin Lungwitz

AGS: F. Wang, arXiv: nucl-ex/0010002

Benjamin Lungwitz

Strangeness carriers

- strangeness carriers:
 K⁻, K⁰ ^(a)
 - Λ (incl. Σ^0)
 - -Ξ,Ω^(b)
 - $-\sum^{\pm} (c)$
- anti-strangeness carriers:
 - $K^+, K^{0(a)}$
 - $-\overline{\Lambda}$ (incl. $\overline{\Sigma^0}$)
 - -Ξ,Ω^(b)
 - $-\overline{\Sigma^{\pm}}$ (c)
- (a): obtained by isospin symmetry
- (b): taken from hadron gas fit if not measured
- (c): empirical factor of Σ/Λ assumed

Benjamin Lungwitz

- $T(\pi)$ independent of system size
 - light particles less sensitive to collective expansion
- T(K) increases with system size
 - stronger collective expansion in heavier systems

Benjamin Lungwitz

Hydro calculation

\rightarrow Change of EOS seen?

Benjamin Lungwitz

