Latest Results from RHIC

Multiparticle Production from Au+Au, Cu+Cu, d+Au and p+p Collisions

"Interplay between Collision Energy and Collision Geometry"

Rachid NOUICER Brookhaven National Laboratory (BNL)

XXXV International Symposium on Multiparticle Dynamics Kromeriz, Czech Republic, August 9-15, 2005

Four Complementary Experiments

ISMD2005

Rachid NOUICER

ATIONAL LABORATORY

Outline

- Introduction:
 - Nucleon Participants and Constituent Quark Participants
- Global Properties:
 - New Results on Charged Particle Multiplicity in AuAu/CuCu/pp
 - Confrontation Models vs DATA for d+Au at 200 GeV
 - Hard Process vs Interacting Constituent Quarks
 - Factorization of Energy and Centrality Dependence at $|\eta|<1$
 - Overall Factorization of the Pseudorapidity Distributions in AuAu/CuCu Collisions
 - <u>Density per Nucleon</u> and <u>Density per Constituent</u> Quark in AuAu/CuCu/PbPb/pp Collisions vs Colliding Energies
 - Extended Longitudinal Scaling "Limiting Fragmentation" Scenario
- Collective effect: Flow at RHIC
- Summary

Pseudorapidity Distributions of Charged Particles New Results from RHIC Cu+Cu at 62.4 and 200 GeV

Pseudorapidity Distributions of Charged Particles Confrontation Models vs Data d+Au at 200 GeV

ISMD2005

Pseudorapidity Distributions of Charged Particles Overview of the Distributions in Au+Au and Cu+Cu vs p+p Collisions

Distributions Scaled to N_{n-part}

Rachid NOUICER

ISMD2005

Pseudorapidity Distributions of Charged Particles Overview of the Distributions in Au+Au and Cu+Cu vs p+p Collisions

Distributions Scaled to N_{n-part}

Rachid NOUICER

ISMD2005

Pseudorapidity Distributions of Charged Particles Overview of the Distributions in Au+Au and Cu+Cu vs p+p Collisions

Distributions Scaled to N_{q-part}

Using data: PRL 93, 082302 (2004) for AuAu

Using PHOBOS (Prel.) QM2005: Cu+Cu at 200 and 62.4 GeV

ISMD2005

Multiparticle Production at Midrapidity $|\eta| < 1$ Hard Process vs Interacting Constituent Quarks

Increase of $dN/d\eta$ per nucleon participant pair with centrality can be explained by the relative increase in the number of interacting constituent quarks in more central collisions

ISMD2005

Multiparticle Production at Midrapidity $|\eta| < 1$ Factorization of Energy and Centrality Dependence

Is the factorization of energy and centrality dependence initial state effect?

Overall Factorization of the Pseudorapidity Distributions Au+Au vs Cu+Cu at 200 GeV

Using data: PRL 93, 082302 (2004) for AuAu

An idea at high altitude over the Atlantic Ocean (expensive idea)!

 $\frac{dN/d\eta (Au+Au: 0-6\%)}{dN/d\eta (Cu+Cu: 0-6\%)} = R_{Cu}^{Au}(0-6\%)$

 $\frac{dN^{Fact.}(CuCu: x \%) = R_{Cu}^{Au}(0-6\%) \frac{dN^{Meas.}(AuAu: x \%)}{d\eta}$

 $\frac{dN^{Fact.}(Cu+Cu: x\%)}{d\eta} \stackrel{?}{=} \frac{dN^{Meas.}(Cu+Cu: x\%)}{d\eta}$

Does this factorization work and can we predict the dN/d η distributions of Cu+Cu based on Au+Au?

ISMD2005

Overall Factorization of the Pseudorapidity Distributions Au+Au vs Cu+Cu at 200 GeV

Using data: PRL 93, 082302 (2004) for AuAu Using PHOBOS (Prel.) QM2005: Cu+Cu at 200 GeV

YES, the overall factorization of the pseudorapidity distributions is working between Au+Au and Cu+Cu at 200 GeV

Multiparticle Production at Midrapidity |η| <1 Interplay between Collision Energy and Collision Geometry Particle Density per Nucleon in AuAu/CuCu

Question: What is the particle density per nucleon in Au+Au/Cu+Cu at the same Energy?

> Answer: they are the same (within systematic errors)

In symmetric collisions Nucleus-Nucleus: it seems the density per nucleon doesn't depend on the size of the two colliding nuclei but it depends on the colliding energy

Multiparticle Production at Midrapidity $|\eta| < 1$ Density per Nucleon and Density per Constituent Quarks

Multiparticle Production at Midrapidity $|\eta| < 1$ Density per Nucleon and Density per Constituent Quarks

Definitions: Density per Nucleon: dN/d*η*/0.5*N_{n-part} Density per Constituent Quark: dN/d*η*/0.5*N_{q-part}

At the same energy in C.M.

- <u>DENSITY PER NUCLEON</u> is similar between Au+Au and Cu+Cu but it's higher than p+p

- <u>DENSITY PER CONSTITUENT</u> <u>QUARKS</u> same in all systems Au+Au, Cu+Cu and pp

Multiparticle Production at Midrapidity $|\eta| < 1$ Density per Nucleon and Density per Constituent Quarks

v_2 vs. p_T

Large values indicate strong sensitivity to the system geometry for production at all measured p_T v₂ at intermediate p_T is grouped by quark number

Transverse Momentum p_T (GeV/c)

Rachid NOUICER

STAR QM 2005

Comparison to Predictions

ISMD2005

STAR QM 2005

ATIONAL LABORATORY

Charged Particle Production in forward Regions Extended Longitudinal Scaling "Limiting Fragmentation" Scenario

Using data: PRL 93, 082302 (2004) for AuAu

Using PHOBOS (Prel.) QM2005: Cu+Cu at 200 and 62.4 GeV

ISMD2005

Charged Particle Production in forward Regions Extended Longitudinal Scaling "Limiting Fragmentation" Scenario

Until today, there is no clean description of how AA and pp differ In the limiting fragmentation region

ISMD2005

Charged Particle Production in forward Regions Extended Longitudinal Scaling "Limiting Fragmentation" Scenario

ISMD2005

Summary

- THE RHIC program is an incredible success
- At QM 2005, very impressive amount of experimental results from all over the word have been presented and are very interesting.
- The data are often simpler than the interpretations
- * My main points in this talk are very simple:
 - In the Constituent Quarks Framework (CQF):

the initial states in AA and pp collisions are SIMILAR

- A lot of physics results which are not understood in the
 - nucleon framework can be well explain in the constituent
 - quarks framework.

