Status of α_s Determinations

Markus Wobisch, Fermilab

XXXV International Symposium on Multiparticle Dynamics 2005

- previous world averages
- which measurements did they include?
- >> new results
- limiting factors
- perspectives / expectations

Renormalization Group Equation

Renormalization Procedure introduces scale dependence of pert. cross section and α_s \Rightarrow Observable R does not depend on choice of μ_r :

Renormalization Group Equation:

$$\mu_r^2 \frac{\partial R}{\partial \mu_r^2} + \mu_r^2 \frac{\partial \alpha_s}{\partial \mu_r^2} \frac{\partial R}{\partial \alpha_s} = 0$$

$$\frac{\partial a}{\partial \ln \mu_r^2} = \beta(a) = -\beta_0 a^2 - \beta_1 a^3 - \beta_2 a^4 - \beta_3 a^5 + \mathcal{O}(a^6) \qquad a(\mu_r) \equiv \alpha_s(\mu_r)/(4\pi)$$

computed up to NNNLL (=4-loops)

0

$$\begin{split} \beta_0 &= 11 - \frac{2}{3} n_f \\ \beta_1 &= 102 - \frac{38}{3} n_f \\ \beta_2 &= \frac{2857}{2} - \frac{5033}{18} n_f + \frac{325}{54} n_f \\ \beta_3 &= \left(\frac{149753}{6} + 3564 \zeta_3\right) - \left(\frac{1078361}{162} + \frac{6508}{27} \zeta_3\right) n_f + \left(\frac{50065}{162} + \frac{6472}{81} \zeta_3\right) n_f^2 + \frac{1093}{729} n_f^3 \\ \text{with: } \zeta_3 &= 1.202056903... \end{split}$$

A Single Free Parameter: $\alpha_s(M_Z)$

$$a(\mu_r) = \frac{a(M_Z)}{1 + a(M_Z) L}$$

with

$$L = \beta_0 \ln \frac{\mu_r^2}{M_z^2} + b_1 \ln \frac{a(M_Z)}{a(\mu_r)} + (b_2 - b_1^2)(a(M_Z) - a(\mu_r)) + \left(\frac{b_3}{2} - b_1 b_2 + \frac{b_1^3}{2}\right) (a^2(M_Z) - a^2(\mu_r))$$

with: $b_N = \beta_N / \beta_0$

 $M_Z = 91.1876 \pm 0.0021$ (PDG 2005)

 \Rightarrow important: no Lambda value is needed – much clearer to define in terms of $\alpha_s(M_Z)$

• approximate solution: solve iteratively and discard terms of $\mathcal{O}(1/\ln^N(\mu_r^2/M_Z^2))$

exact solution using numerical methods (as used by PDF evolution program QCD-Pegasus by A. Vogt)

Running α_s

- Significant differences only between 1-loop and n-loop formulas (n = 2, 3, 4)
 - n=2,3,4-loop formulas agree within 0.4% for $\mu_r > m_b$ ($n_f=5$)

difference of $\pm 0.004 @\mu = M_Z$ evolves to $\pm 5\% @10 \text{ GeV}$ and $\pm 6\% @5 \text{ GeV}$ for $\mathcal{O}(\alpha_s^2)$ processes this means: $\pm 10\% @10 \text{ GeV}$ and $\pm 12\% @5 \text{ GeV}$

History of World Averages in Past Decade

 $\alpha_s(M_Z) = \dots$

PDG 1996 0.118 ± 0.003 PDG 1998 0.119 ± 0.002 PDG 1999 0.1185 ± 0.002 PDG 2000 0.1181 ± 0.002 PDG 2002 0.1172 ± 0.002 PDG 2004 0.1187 ± 0.002

Bethke 2000	0.1184 ± 0.0031
Bethke 2002	0.1183 ± 0.0027
Bethke 2004	0.1182 ± 0.0027

 \implies LEP EW WG uses currently 0.118 ± 0.003 – very reasonable!

go through different processes

- not exhaustive! special emphasis on jet production ... and selected new results
- discuss principles / issues

results used in world average value

emphasize new results, not included in previous world averages

not discussed here:

- Structure Functions (Scaling Violations and Sum Rules)
- Tau Decay
- Upsilon Decay
- Scaling Violations of Fragmentation Functions

e^+e^- Total Hadr. Cross Section & EW Precision Fits

rely on predictions (and validity) of standard model!!

Combined from LEP-I and LEP-II electroweak precision measurements: $R = \Gamma_{had}/\Gamma_{l} = 20.767 \pm 0.025$ \rightarrow NNLO analysis: $\alpha_{s}(M_{Z}) = 0.1126 \pm 0.0038 \text{ (exp.)}^{+0.0033}_{-0.0000} (M_{H})^{+0.0028}_{-0.0005} \text{ (QCD)}$ (used by Bethke2004)

Solution global electroweak precision fits of M_Z , M_H , M_t , $\Delta \alpha_{had}^{(5)}$ in NNLO (all Z-pole data - plus direct m_t , m_W , Γ_W determinations – i.e. all high Q^2 results) $\alpha_s(M_Z) = 0.1186 \pm 0.0027$ (exp.) (no dependence on Higgs mass)

so far: theory uncertainty unknown \rightarrow PDG2004 added difference to the value above: $\alpha_s(M_Z) = 0.1186 \pm 0.0027$ (exp.) ± 0.003 (theor.)

> new: determination of theor. uncertainty by H. Stenzel (hep-ph/0501245) $\alpha_s(M_Z) = 0.1186 \pm 0.0027$ (exp.) ± 0.0013 (theor.)

(rare case: experimental effects dominate)

⇒ significant improvement of already precise value – impact on future world average!

e+e- Jets and Hadronic Event Shapes

study variables V, defined on the hadronic final state, which are IR and collinear safe and which are directly sensitive to higher order parton emissions, i.e. $V \propto \alpha_s$

 event shape variables: variables, defined by weighted sum over all particles (1-Thrust), Heavy Jet Mass, C Parameter, 3-Jet Parameter

jet rates:

reconstruct collimated blocks of particle energies using jet algorithm: Durham, Cambridge, Cone, JADE study transition: for 2 jets \rightarrow 3 jets \rightarrow 4 jets

large No. of measurements from OPAL, DELPHI, ALEPH, L3 at different energies theory NLO + NLLA – average value from 2004:

 $lpha_s(M_Z) = 0.1202 \pm 0.0009$ (exp.) ± 0.0009 (hadr) ± 0.0047 (theor.)

 \Rightarrow Clearly limited by theoretical precision

e+e- Event Shape Distributions and Moments

 $\alpha_s(M_Z) = 0.1191 \pm 0.0011$ (exp) ± 0.0011 (hadr) ± 0.0044 (theor.)

\Rightarrow good confirmation of existing results

e+e- Four-Jet Rate

new result: DELPHI (hep-ex/0410071): ratio of four jet events in all events $\propto \alpha_s^2$ Durham, Cambridge and JADE jet algorithms – large range: $\sqrt{s} = 89 \text{ GeV} - 209 \text{ GeV}$

smaller third-order contribution for Cambridge algorithm: $\alpha_s(M_Z) = 0.1175 \pm 0.0010$ (exp) ± 0.0027 (hadr) ± 0.0007 (theor.)

questionable: "experimentally optimized" scales \Rightarrow ren. scale has been fitted to data $x_{\mu} = 0.015$ for Durham, $x_{\mu} = 0.042$ for Cambridge algo - why so different/small??

(I personally don't trust the quoted theory uncertainty)

e+e- Jet Rates

most recent result: OPAL (hep-ex/0507047): differential two jet rate and average jet rate

 $\alpha_s(M_Z) = 0.1177 \pm 0.0013$ (exp) ± 0.0010 (hadr) ± 0.0032 (theor.)

 \Rightarrow error is slightly larger than the one from a previous publication: $\sqrt{s} = 35 \text{ GeV} - 189 \text{ GeV}$

α_s in Hadron-Induced Reactions (DIS/pp)

> Problem: need PDF knowledge \rightarrow correlation α_s and PDFs (especially the gluon!)

$$\chi^2(\alpha_s) = \frac{(D - T(\alpha_s))^2}{\sigma^2} \longrightarrow \frac{(D - T(\alpha_s, \mathsf{PDF}))^2}{\sigma^2}$$

> In addition: PDF knowledge is already coupled to α_s knowledge

one approximation:

 use best PDF fit result and ignore correlation
 later: use different PDFs – demonstrate small dependence (if you're lucky!)

 different approximation:

 accept that PDFs fit results depend on α_s – choose PDF sets for different values of α_s(M_Z)

$$\chi^2(\alpha_s) = rac{(D - T(\alpha_s, \mathsf{PDF}(\alpha_s)))^2}{\sigma^2}$$

PDFs for different α_s values had different χ^2 values in PDF fit

$$\chi^{2}(\alpha_{s}) = \frac{(D - T(\alpha_{s}, \mathsf{PDF}(\alpha_{s})))^{2}}{\sigma^{2}} + \Delta\chi^{2}(\mathsf{PDF}(\alpha_{s}))$$

...but usually ignored — real problem: no modern PDFs available for flexible $\alpha_s(M_Z)$

 \Rightarrow only one real solution: should aim for combined fits of α_s and the PDFs

DIS Jets

In the last years: large number of jet measurements from HERA **new:** HERA summary by C. Glasman (hep-ex/0506035):

 $\alpha_s(M_Z) = 0.1186 \pm 0.0011$ (exp) ± 0.0050 (theor.)

 \Rightarrow includes Jets and Structure Function results – it might be preferable to separate these

DIS Jets

the energy dependence of α_s — for HERA jet results:

 \Rightarrow nice demonstration of the running of $\alpha_s(\mu_r)$

DIS jets – Ratio 3-Jet/2-Jet Production

new: ZEUS (hep-ex0502007)

 $\sigma_{3m jet}/\sigma_{2m jet} \propto lpha_s$

measurement (left) / α_s (right)

ZEUS

 $\alpha_s(M_Z) = 0.1179 \pm 0.0013 \,(\text{stat})^{+0.0028}_{-0.0046} \,(\text{exp.})^{+0.0046}_{-0.0064}$ (theor)

 \Rightarrow jet ratio: new approach — important to demonstrate consistency

Markus Wobisch, Fermilab

ISMD2005: Status of α_s Determinations

$\textit{Hadron-Hadron} \rightarrow \textit{Jets}$

- CDF Collaboration: inclusive jet cross section Tevatron Run I / at $\sqrt{s} = 1800 \text{ GeV}$ in $40 < E_{T, \text{ jet}} < 450 \text{ GeV}$ (CDF, Phys.Rev. D64 (2001) 032001)
 - each data point $\sigma_{jet}(E_T) \propto \alpha_s^2(\mu = E_T) \Rightarrow \alpha_s(E_T)$ combined fit: $40 < E_{T, jet} < 250 \text{ GeV} \Rightarrow \alpha_s(M_Z)$ exclude high E_T data – not consistent (old PDFs?) (but no statistical power if included)

input PDFs: CTEQ4 and CTEQ4A series ... but exclude the PDFs with $\chi^2/\text{ndf} > 5$

 $\alpha_s(M_Z) = 0.1178^{+0.0081}_{-0.0095} \text{(exp)} \, {}^{+0.007}_{-0.005} \text{(theory)}_{\pm 0.006} \text{(PDF)}$

(CDF, Phys.Rev.Lett.88:042001,2002) \rightarrow used by PDG and Bethke

 \Rightarrow rare case: dominated by large exp. uncertainties ... would benefit from combining with DØ jets!

(limit: sensitivity only at large scales E_T)

Lattice QCD (1.)

results from hep-lat/0404004, C. Davies et al. – and new: hep-lat/0503005, Q. Mason et al.

5 LQCD parameters:

- bare quark masses $m_u=m_d, m_s, m_c, m_b$
- bare QCD coupling

tune bare quark masses to reproduce exp. results: $m_{\pi}^2, 2m_K^2 - m_{\pi}^2, m_{D_s}, m_{\Upsilon}$ (high sensitivity / small intercorrelation)

fix bare coupling: determine lattice spacing a from Υ mass splitting: Υ' – Υ new: show agreement with ten other physical quantities (pion, kaon leptonic decay constants, B_s mass, Ω baryon mass)

• new: first analyses to include vacuum polarization from all three light-quarks older results: "quenched approxim." $n_f = 0$ or $n_f = 2$ had to be extrapolated to $n_f = 3$ \rightarrow major source of uncertainty – more consistent results in new analysis

Plot: ratios Lattice QCD over Experiment (after tuning, as described above) for $n_f = 0, 3$ \Rightarrow consistent only for $n_f = 3$

Lattice QCD (2.)

Lattice QCD (3.)

- significant progress first time:
 - include vacuum polarization from all three light-quark flavors
 - include third order terms in perturbation theory
 - systematically estimate fourth and higher order terms
- Three dominant sources of uncertainty
 - uncertainty in inverse lattice spacing
 - residual uncertainties in perturbative coefficients (from numerical calculation)
 - uncertainty from perturbative coefficients from higher orders
- PDG 2004 and Bethke 2004 used previous result from hep-lat/0404004, C. Davies et al.

 $\alpha_s(M_Z) = 0.121 \pm 0.003$

Significant improvements in recent analysis hep-lat/0503005, Q. Mason et al.

 $\alpha_s(M_Z) = 0.1170 \pm 0.0012$

 \implies Only result in the world with precision better than 2% (and it's much better!)

... so revolutionary, that we would like to see some independent confirmation!

Overview of $\alpha_s(M_Z)$ results – 2004

How the World Averages are Obtained

- PDG and Bethke both use error-weighted average for central value
- > average not dominated by single measurement several results with compatible small uncertainties τ decay, lattice, DIS, v decay, Z width
- errors are dominated by theory!!!!!! (not gaussian meaning unclear) have: correlations between similar observables (e+e- jet rates and event shapes) maybe: also between similar observables from different processes (jets e+e-, DIS, pp)

▶ PDG: quote result with arbitrarily increased error $0.0013 \rightarrow 0.002$

- > Bethke: more detailed procedure: weighted average gives similar error as PDG - with much smaller χ^2 /ndf
- ► error weighted average and an "optimized" correlation error are calculated from the error covariance matrix, assuming overall correlation factor between the total errors of all measurements → adjust factor to get overall $\chi^2/ndf = 1$
- simple unweighted RMS of the mean values of all measurements
- assume rectangular shaped errors (instead of gaussian probability distributions)
- all three methods have different advantages and different problems important: demonstrate consistency / no strong dependence
- also: restrict the average to most significant subsets of data
- final result: include only determinations from NNLO theory

Previous World Average Values

 $\alpha_s(M_Z) = \dots$

PDG 2004 0.1187 ± 0.002

Bethke 2004 0.1182 ± 0.0027

(these numbers from 2004 do not include most recent results)

 \implies I am not trying to come up with a new world average value, including the most recent results \rightarrow ... let's wait for S. Bethke's update

... the new values have a tendency to slightly lower the value — but no significant change

 $\Rightarrow \alpha_s(M_Z) = 0.118$ is still a reasonable value

Summary and Conclusions

- The present talk focused on a single number: $\alpha_s(M_Z)$
 - \Rightarrow Very convenient to address consistency of a large set of measurements
 - \Rightarrow much more important: theory describes all kinds of differential distributions
- The large variety of experimental analyses proves that QCD is a perfectly adequate to describe all high energy phenomena at present colliders
- > for all α_s results: almost all experimental errors are dominated by systematics
- almost all α_s results are limited by theoretical uncertainties \Rightarrow scale dependence of the NLO / NLO+NLLA calculations
- > a good modern result: $\alpha_s(M_Z) = 0.117 0.119 \pm 0.003$ (exp) ± 0.004 (teor)
- be aware: true theory uncertainty can be larger than scale dependence (there can be different contributions from higher orders)
- no further progress without significant theoretical improvements!

Perspectives

Where do we stand today? most important question: Can we trust the Result from Lattice QCD? if yes: GREAT!! we have reached 1% precision

Where are we going? at LHC: α_s determinations at typical scales of large $\mu = p_T$ will not be very sensitive on the other hand: α_s uncertainty is not that critical for predictions at large p_T

What do we need? Progress in Theory!!

• What we don't need: Any further α_s determinations with experimental or theoretical uncertainties above ± 0.005