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Renormalization Group Equation

Renormalization Procedure introduces scale dependence of pert. cross section and αs

⇒ Observable R does not depend on choice of µr:

Renormalization Group Equation: µ2
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with: ζ3 = 1.202056903...
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A Single Free Parameter: αs(MZ)

a(µr) =
a(MZ)

1 + a(MZ) L

with

L = β0 ln
µ2

r

M2
z

+ b1 ln
a(MZ)

a(µr)
+ (b2 − b

2
1)(a(MZ) − a(µr))

+

 

b3

2
− b1b2 +

b3
1

2

!

(a2(MZ) − a2(µr))

with: bN = βN/β0 MZ = 91.1876 ± 0.0021 (PDG 2005)

=⇒ important: no Lambda value is needed – much clearer to define in terms of αs(MZ)

approximate solution:
solve iteratively and discard terms of O(1/ lnN(µ2

r/M2
Z))

exact solution using numerical methods
(as used by PDF evolution program QCD-Pegasus by A. Vogt)
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Running αs
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αs(MZ) = 0.123

αs(MZ) = 0.119

αs(MZ) = 0.115

αs(MZ) = 0.111

significant differences only between
1-loop and n-loop formulas (n = 2, 3, 4)

n = 2, 3, 4-loop formulas agree
within 0.4% for µr > mb (nf = 5)

difference of ±0.004 @µ = MZ evolves
to ±5% @10 GeV and ±6% @5 GeV

for O(α2
s) processes this means:

±10% @10 GeV and ±12% @5 GeV
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History of World Averages in Past Decade

αs(MZ) = ...

PDG 1996 0.118 ± 0.003

PDG 1998 0.119 ± 0.002

PDG 1999 0.1185 ± 0.002

PDG 2000 0.1181 ± 0.002

PDG 2002 0.1172 ± 0.002

PDG 2004 0.1187 ± 0.002

Bethke 2000 0.1184 ± 0.0031

Bethke 2002 0.1183 ± 0.0027

Bethke 2004 0.1182 ± 0.0027

=⇒ LEP EW WG uses currently 0.118 ± 0.003 – very reasonable!
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Overview

go through different processes

not exhaustive!
special emphasis on jet production ... and selected new results

discuss principles / issues

results used in world average value

emphasize new results, not included in previous world averages

not discussed here:

Structure Functions (Scaling Violations and Sum Rules)

Tau Decay

Upsilon Decay

Scaling Violations of Fragmentation Functions
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e
+
e

− Total Hadr. Cross Section & EW Precision Fits

rely on predictions (and validity) of standard model!!

Combined from LEP-I and LEP-II electroweak precision measurements:
R = Γhad/Γl = 20.767 ± 0.025

→ NNLO analysis:
αs(MZ) = 0.1126 ± 0.0038 (exp.)+0.0033

−0.0000 (MH)+0.0028
−0.0005 (QCD) (used by Bethke2004)

global electroweak precision fits of MZ, MH , Mt, ∆α
(5)
had

in NNLO
(all Z-pole data - plus direct mt, mW , ΓW determinations – i.e. all high Q2 results)
αs(MZ) = 0.1186 ± 0.0027 (exp.) (no dependence on Higgs mass)

so far: theory uncertainty unknown → PDG2004 added difference to the value above:
αs(MZ) = 0.1186 ± 0.0027 (exp.) ± 0.003 (theor.)

new: determination of theor. uncertainty by H. Stenzel (hep-ph/0501245)
αs(MZ) = 0.1186 ± 0.0027 (exp.) ± 0.0013 (theor.)

(rare case: experimental effects dominate)

=⇒ significant improvement of already precise value – impact on future world average!
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e+e- Jets and Hadronic Event Shapes

study variables V , defined on the hadronic final state, which are IR and collinear safe
and which are directly sensitive to higher order parton emissions, i.e. V ∝ αs

event shape variables:
variables, defined by weighted sum over all particles
(1-Thrust), Heavy Jet Mass, C Parameter, 3-Jet Parameter

jet rates:
reconstruct collimated blocks of particle energies using jet algorithm:
Durham, Cambridge, Cone, JADE
study transition: for 2 jets → 3 jets → 4 jets

large No. of measurements from OPAL, DELPHI, ALEPH, L3 at different energies
theory NLO + NLLA – average value from 2004:

αs(MZ) = 0.1202 ± 0.0009 (exp.) ± 0.0009 (hadr) ± 0.0047 (theor.)

⇒ Clearly limited by theoretical precision
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e+e- Event Shape Distributions and Moments
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new result: OPAL (hep-ex/0503051)

large range:
√
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23
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ALL OPAL

αs(MZ) = 0.1191 ± 0.0011 (exp) ± 0.0011 (hadr) ± 0.0044 (theor.)

⇒ good confirmation of existing results
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e+e- Four-Jet Rate

new result: DELPHI (hep-ex/0410071): ratio of four jet events in all events ∝ α2
s

Durham, Cambridge and JADE jet algorithms – large range:
√

s = 89 GeV – 209 GeV
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smaller third-order contribution for Cambridge algorithm:
αs(MZ) = 0.1175 ± 0.0010 (exp) ± 0.0027 (hadr) ± 0.0007 (theor.)

questionable: “experimentally optimized” scales ⇒ ren. scale has been fitted to data
xµ = 0.015 for Durham, xµ = 0.042 for Cambridge algo - why so different/small??

(I personally don’t trust the quoted theory uncertainty)
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e+e- Jet Rates

most recent result: OPAL (hep-ex/0507047): differential two jet rate and average jet rate

large range:
√

s = 91 GeV – 209 GeV

using four jet algorithms:
Durham, Cambridge, Cone and JADE

theory: NLO (O(α2
s))

with matched NLLA predictions
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ALL OPAL

αs(MZ) = 0.1177 ± 0.0013 (exp) ± 0.0010 (hadr) ± 0.0032 (theor.)

⇒ error is slightly larger than the one from a previous publication:
√

s = 35 GeV – 189 GeV
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αs in Hadron-Induced Reactions (DIS/pp)

Problem: need PDF knowledge → correlation αs and PDFs (especially the gluon!)

χ2(αs) =
(D − T (αs))

2

σ2
−→

(D − T (αs, PDF))2

σ2

In addition: PDF knowledge is already coupled to αs knowledge

one approximation:
use best PDF fit result and ignore correlation
later: use different PDFs – demonstrate small dependence (if you’re lucky!)
different approximation:
accept that PDFs fit results depend on αs – choose PDF sets for different values of αs(MZ)

χ2(αs) =
(D − T (αs, PDF(αs)))

2

σ2

problem: these PDFs are not all standing on the same footing!!!!
PDFs for different αs values had different χ2 values in PDF fit

χ2(αs) =
(D − T (αs, PDF(αs)))

2

σ2
+ ∆χ2(PDF(αs))

...but usually ignored — real problem: no modern PDFs available for flexible αs(MZ)

⇒ only one real solution: should aim for combined fits of αs and the PDFs
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DIS Jets

In the last years: large number of jet measurements from HERA
new: HERA summary by C. Glasman (hep-ex/0506035):

th. uncert.

exp. uncert.

 World average
 (S. Bethke, hep-ex/0407021)

 Dijet cross sections in NC DIS
 ZEUS (Phys Lett B 507 (2001) 70)

 Inclusive jet cross sections in NC DIS
 ZEUS (Phys Lett B 547 (2002) 164)

 Inclusive jet cross sections in NC DIS
 H1 (Eur Phys J C 19 (2001) 289)

 NLO QCD fit
 ZEUS (Phys Rev D 67 (2003) 012007)

 NLO QCD fit
 ZEUS (DESY 05-050 - hep-ex/0503274)

 NLO QCD fit
 H1 (Eur Phys J C 21 (2001) 33)

 Subjet multiplicity in NC DIS
 ZEUS (Phys Lett B 558 (2003) 41)

 Subjet multiplicity in CC DIS
 ZEUS (Eur Phys Jour C 31 (2003) 149)

 Inclusive jet cross sections in γp
 ZEUS (Phys Lett B 560 (2003) 7)

 Multi-jets in NC DIS
 ZEUS (DESY 05-019 - hep-ex/0502007)

 Jet shapes in NC DIS
 ZEUS (Nucl Phys B 700 (2004) 3)
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th. uncert. exp. uncert.

αs(MZ) = 0.1186 ± 0.0011 (exp) ± 0.0050 (theor.)

⇒ includes Jets and Structure Function results – it might be preferable to separate these
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DIS Jets

the energy dependence of αs — for HERA jet results:
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 α
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⇒ nice demonstration of the running of αs(µr)
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DIS jets – Ratio 3-Jet/2-Jet Production

new: ZEUS (hep-ex0502007) σ3−jet/σ2−jet ∝ αs measurement (left) / αs (right)
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αs(MZ) = 0.1179 ± 0.0013 (stat)+0.0028
−0.0046 (exp.)+0.0046

−0.0064 (theor)

⇒ jet ratio: new approach — important to demonstrate consistency
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Hadron-Hadron → Jets

CDF Collaboration: inclusive jet cross section
Tevatron Run I / at

√
s = 1800 GeV

in 40 < ET, jet < 450 GeV
(CDF, Phys.Rev. D64 (2001) 032001)

each data point σjet(ET ) ∝ α2
s(µ = ET) ⇒ αs(ET )

combined fit: 40 < ET, jet < 250 GeV ⇒ αs(MZ)

exclude high ET data – not consistent (old PDFs?)

(but no statistical power if included)

input PDFs: CTEQ4 and CTEQ4A series
... but exclude the PDFs with χ2/ndf > 5

αs(MZ) = 0.1178+0.0081
−0.0095(exp) +0.007

−0.005(theory)
±0.006 (PDF)

(CDF, Phys.Rev.Lett.88:042001,2002)

→ used by PDG and Bethke

⇒ rare case: dominated by large exp. uncertainties
... would benefit from combining with DØ jets!

(limit: sensitivity only at large scales ET )
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Lattice QCD (1.)

results from hep-lat/0404004, C. Davies et al. – and new: hep-lat/0503005, Q. Mason et al.

5 LQCD parameters:
- bare quark masses mu = md, ms, mc, mb

- bare QCD coupling

tune bare quark masses to reproduce exp. results:
m2

π, 2m2
K − m2

π, mDs, mΥ

(high sensitivity / small intercorrelation)

fix bare coupling: determine lattice spacing a

from Υ mass splitting: Υ′ − Υ

new: show agreement with ten other physical
quantities (pion, kaon leptonic decay constants,
Bs mass, Ω baryon mass)

fπ

fK

3MΞ −MN

2MBs
−MΥ

ψ(1P − 1S)

Υ(1D − 1S)

Υ(2P − 1S)

Υ(3S − 1S)

Υ(1P − 1S)

LQCD/Exp’t (nf = 0)

1.110.9

LQCD/Exp’t (nf = 3)

1.110.9

new: first analyses to include vacuum polarization from all three light-quarks
older results: “quenched approxim.” nf = 0 or nf = 2 had to be extrapolated to nf = 3

→ major source of uncertainty – more consistent results in new analysis

plot: ratios Lattice QCD over Experiment (after tuning, as described above) for nf = 0, 3

⇒ consistent only for nf = 3
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Lattice QCD (2.)

use accurately tuned QCD simulation to compute
non-perturbative results for a variety of short-distance quantities

compare results with NNLO pQCD predictions
⇒ extract αs

28 quantities:
6 vacuum expectation values of Wilson Loop Operators

⇒ ... large estimated NNNLO coefficients

→ 6 Creutz ratios

→ 7 “tadpole improved” Wilson Loops (divided by u
2(n+m)
0 )

⇒ the“improved” quantities have smaller HO corrections

but also reduced sensitivity

→ 6x static quark potential V(r) (perturbative at short distances)

→ tadpole-improved bare lattice coupling αlat/W11

extract 3-flavor coupling αV from each of the 28 quantities
→ convert from “V-scheme” to MS-scheme
→ add c and b quark vacuum polarization (perturbatively)
⇒ evolve to the Z-mass

weighted average: αs(MZ) = 0.1170 ± 0.0012 0.115 0.117 0.119
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Lattice QCD (3.)

significant progress – first time:
- include vacuum polarization from all three light-quark flavors
- include third order terms in perturbation theory
- systematically estimate fourth and higher order terms

Three dominant sources of uncertainty
- uncertainty in inverse lattice spacing
- residual uncertainties in perturbative coefficients (from numerical calculation)
- uncertainty from perturbative coefficients from higher orders

PDG 2004 and Bethke 2004 used previous result from hep-lat/0404004, C. Davies et al.

αs(MZ) = 0.121 ± 0.003

Significant improvements in recent analysis hep-lat/0503005, Q. Mason et al.

αs(MZ) = 0.1170 ± 0.0012

=⇒ Only result in the world with precision better than 2% (and it’s much better!)

... so revolutionary, that we would like to see some independent confirmation!
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Overview of αs(MZ) results – 2004

Bethke 2004 (right)
PDG 2004 (below)
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jets & shapes 161 GeV
jets & shapes 172 GeV

0.08 0.10 0.12 0.14
(((( ))))s Z

-decays [LEP]

xF [ -DIS]
F [e-, µ-DIS]

decays

(Z --> had.) [LEP]

e e [ ]+ had
_

e e [jets & shapes 35 GeV]+ _

(pp --> jets)

pp --> bb X

0

QQ + lattice QCD

DIS [GLS-SR]

2
3

pp, pp --> X

DIS [Bj-SR]

e e [jets & shapes 58 GeV]+ _

jets & shapes 133 GeV

e e [jets & shapes 22 GeV]+ _

e e [jets & shapes 44 GeV]+ _

e e [ ]+
had

_

jets & shapes 183 GeV

DIS [pol. strct. fctn.]

jets & shapes 189 GeV

e e [scaling. viol.]+ _

jets & shapes 91.2 GeV

e e F+ _
2

e e [jets & shapes 14 GeV]+ _

e e [4-jet rate]+ _

jets & shapes 195 GeV
jets & shapes 201 GeV
jets & shapes 206 GeV

DIS [ep –> jets]

Markus Wobisch, Fermilab ISMD2005: Status of αs Determinations 20



How the World Averages are Obtained

PDG and Bethke both use error-weighted average for central value

average not dominated by single measurement several results with compatible small
uncertainties τ decay, lattice, DIS, υ decay, Z width

errors are dominated by theory!!!!!! (not gaussian - meaning unclear)
have: correlations between similar observables (e+e- jet rates and event shapes)
maybe: also between similar observables from different processes (jets e+e-, DIS, pp)

PDG: quote result with arbitrarily increased error 0.0013 → 0.002

Bethke: more detailed procedure:
weighted average gives similar error as PDG - with much smaller χ2/ndf

error weighted average and an “optimized” correlation error are calculated from the error
covariance matrix, assuming overall correlation factor between the total errors of all
measurements → adjust factor to get overall χ2/ndf = 1

simple unweighted RMS of the mean values of all measurements

assume rectangular shaped errors (instead of gaussian probability distributions)

all three methods have different advantages and different problems
important: demonstrate consistency / no strong dependence

also: restrict the average to most significant subsets of data

final result: include only determinations from NNLO theory
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Previous World Average Values

αs(MZ) = ...

PDG 2004 0.1187 ± 0.002 Bethke 2004 0.1182 ± 0.0027

(these numbers from 2004 do not include most recent results)

=⇒ I am not trying to come up with a new world average value,
including the most recent results → ... let’s wait for S. Bethke’s update

... the new values have a tendency to slightly lower the value — but no significant change

⇒ αs(MZ) = 0.118 is still a reasonable value
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Summary and Conclusions

The present talk focused on a single number: αs(MZ)

⇒ Very convenient to address consistency of a large set of measurements
⇒ much more important: theory describes all kinds of differential distributions

The large variety of experimental analyses proves that QCD is a perfectly adequate to
describe all high energy phenomena at present colliders

for all αs results: almost all experimental errors are dominated by systematics

almost all αs results are limited by theoretical uncertainties
⇒ scale dependence of the NLO / NLO+NLLA calculations

a good modern result: αs(MZ) = 0.117 − 0.119 ± 0.003 (exp) ± 0.004 (teor)

be aware: true theory uncertainty can be larger than scale dependence
(there can be different contributions from higher orders)

no further progress without significant theoretical improvements!
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Perspectives

Where do we stand today?
most important question: Can we trust the Result from Lattice QCD?
if yes: GREAT!! we have reached 1% precision

Where are we going?
at LHC: αs determinations at typical scales of large µ = pT will not be very sensitive
on the other hand: αs uncertainty is not that critical for predictions at large pT

What do we need?
Progress in Theory!!

What we don’t need:
Any further αs determinations with experimental or theoretical uncertainties above ±0.005
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