Yields and fluctuations in statistical models

G. Torrieri, Physics Department, McGill University In collaboration with: S. Jeon, J. Rafelski, J. Letessier

- Definition
- Equilibrium $(T = 170 MeV, \gamma_{q,s} = 1)$ vs explosive $(T = 140 MeV, \gamma_{q,s} > 1)$ vs Continuus emission+resonance modification vs More complicated models (dynamics)
- Yields and fluctuations in SHM
- Sensitive probes with yields and fluctuations
- Analysis of existing (130 and 200 GeV RHIC data)
- Do it yourself: SHARE http://www.physics.arizona.edu/~torrieri/SHARE/share.html

The statistical model:

$$N = \int \mathcal{M} \prod_{i} \frac{d^3 \vec{p_i}}{E_i} \delta_E \delta_Q$$

 $\mathcal{M} \rightarrow constant$ (dynamics \rightarrow phase space)

$$P_N = \frac{\Omega_N}{\sum_n \Omega_n} \qquad \Omega = \int \prod_i \frac{d^3 \vec{p_i}}{E_i} \delta_E \delta_Q$$

Observables:

$$< N >$$
, $\omega = \frac{< N^2 > - < N >^2}{< N >}$, higher comulants

calculable through partition function

Several ways of defining $\delta_{E,Q} \rightarrow \text{Ensembles}$.

Ensembles , or how to deal with conservation laws $\lim_{V \to \infty}^{N/V=const} < N >$ same in \forall ensembles. <u>not</u> ω

Micro-canonical : EbyE conservation

$$\delta_E \delta_Q = \delta \left(\sum_i E_i - E_T \right) \delta \left(\sum_i Q_i - Q_T \right) \quad \omega_E = \omega_Q = 0$$

Canonical : Energy conserved on average Appropriate for system in equilibrium with <u>bath</u>

$$\delta_E \to \delta \left(E_T - \langle E \rangle \right) \qquad \omega_E \sim 1$$

Grand Canonical : Charge conserved on average

$$\delta_Q \to \delta \left(Q_T - \langle Q \rangle \right) \qquad \qquad \omega_E \sim \omega_Q \sim 1$$

Appropriate for detector sampling part of a fluid

Boost invariance: Rapidity ⇔configuration space

- Mid-rapidity ⇔system
- Peripheral regions ⇔bath
- \Rightarrow Grand Canonical ensemble needs to be used!

Cleymans, Redlich, PRC 60, 054908 (1999):

$$\left[\frac{dN}{dy}\right]_{b.i.} \sim < N >_{4\pi} \quad \left[\frac{d(\Delta N)^2}{dy}\right]_{b.i.} \sim (\Delta N)_{4\pi}^2$$

- All details of flow and freeze-out integrate out
- Up to Normalization,< $N>,\omega$ calculable from Grand Canonical T,λ_i

Ideal	hydro	Statistical model fits well	
Fast	freezeout	$\langle N \rangle = \underline{AND} \langle \overline{N^2} \rangle - \langle \overline{N^2} \rangle$	$V >^{2}$

Clusters etc. \Rightarrow <u>deviation</u> from hydro.

So lets see how the statistical model does! But <u>which one</u>?

Grand canonical statistical hadronization

All particles described in terms of T and $\lambda_{q,s,I3}$. Detailed balance: $\lambda_{\overline{q}} = \lambda_q^{-1}$ Integral can be done in rest-frame wrt flow using Bessel function K_2

$$N_{i} = V' \sum_{n=1}^{\infty} (\mp 1)^{n+1} \frac{\lambda_{i}^{n}}{n} m_{i}^{2} T K_{2} \left(\frac{nm_{i}}{T}\right)$$
$$\Delta N_{i}^{2} = V' \sum_{n=1}^{\infty} (\mp 1)^{n+1} \frac{\lambda_{i}^{n}}{n} \left(\begin{array}{c}2+n-1\\n\end{array}\right) m_{i}^{2} T K_{2} \left(\frac{nm_{i}}{T}\right)$$
$$V' = V(2J_{i}+1) \frac{4\pi}{(2\pi)^{3}}$$

Chemical potentials for conserved quantities

$$\lambda_i = \lambda_u^{u - \overline{u}} \lambda_d^{u - \overline{u}} \lambda_s^{s - \overline{s}}$$

Non-equilibrium through phase space occupancies

$$\lambda_i \to \lambda_i^{\mathrm{eq}} \gamma_u^{u + \overline{u}} \gamma_d^{u + \overline{u}} \gamma_s^{s + \overline{s}} \qquad \gamma^{\mathrm{eq}} = 1$$

Resonance feed-down

$$N_{i} = N_{i}^{direct} + \sum_{j} b_{j \to i} N_{j}$$
$$\Delta N_{i}^{2} = \Delta N_{i}^{2} + \sum_{j} \left[b_{j \to i} \left(1 - b_{j \to i} \right) N_{j} + b_{j \to i}^{2} \Delta N_{j}^{2} \right) \right]$$

Widths

Decay $M \to m_1, m_2, \dots$ width Γ_i , total width Γ_T relative angular momentum l, threshold mass M_{th}

$$N(M,\lambda) \to \frac{\int_{M_{Th}}^{\infty} \rho(m) N(m,T,\lambda) dm}{\int_{M_{Th}}^{\infty} \rho(m) dm}$$

Where

$$\rho(m) = \frac{\Gamma_T \Gamma(m)}{(M-m)^2 + \Gamma^2(m)/4}$$
$$\Gamma(m) = \Gamma_i \left[1 - \left(\frac{M_{Th}}{m}\right) \right]^{l/2}$$

Model I:Equilibrium statistical mechanics (Braun-Munzinger, Magestro, Florkowski, Broniowski, Redlich,...)

 $\frac{dT}{d\sqrt{s}} > 0 \qquad \frac{d\mu_B}{d\sqrt{s}} < 0 \qquad \frac{E}{V} \sim 1 GeV$ Resonances not well described (Rescattering?)

Alternatively... Supercooling+oversaturation (chemical Non-equilibrium <u>but</u> statistical emission)

<u>inaccessible</u> by kinetic evolution (if put "in a box", this system would heat) <u>but</u> accessible in a fast phase transition from a high entropy phase $\gamma_q > 1, \gamma_s/\gamma_q > 1$.

- Small $\lambda_{eq} \rightarrow \gamma$ dominates \Leftrightarrow Statistical coalescence!
- Enthropy survives coalescence by $\gamma > 1$

J. Rafelski, J Letessier, PRL 85:4695-4698,2000: Explosive hadronization from supercooled QGP

$$P_{vacuum} = P_{QGP}$$
 $S_{HG} = S_{QGP}$ $V \sim \frac{2}{3} V_{equilibrium}$

 $T = 140 MeV, \qquad \gamma_q \sim 0.9 e^{m_\pi/2T} \sim 1.6$

"Horn" explained by \sqrt{s} dependance of T, γ_q

Smoking gun 4 deconfinement?? Perhaps...

Equilibrium and non-equilibrium models have a different number of parameters.

Comparison standard: Statistical significance

- Statistical significance, the probability of getting χ^2 with n DoF given that "your model is true", is a quantitative measure of your fit's goodness
- With few DoF, "nice" looking graphs can have a very small statistical significance.
- It is said that you can fit an elephant with enough parameters. Maybe so, but if you are honest, you won't get a good statistical significance.

Maximum for SPS and RHIC is at $\gamma_q>1,~{\rm but}$ equilibrium not ruled out!

Need further data capable of determining γ_q . fluctuations!

Yields and fluctuations: Non-equilibrium

T increase $\Rightarrow \pi$ Fluctuations <u>decrease</u> because of enhanced resonance production

over-saturation $(\gamma_q > 1) \Rightarrow \pi$ Fluctuations <u>increase</u> because of BE corrections

 $\gamma_q > 1$, <u>unlike</u> resonances (detectable,rescattered,inmedium modified,...) affects fluctuations rather than correlations Yields <u>and</u> fluctuations: Reinteraction (or not) Consider $Y^* \to Y\pi$

 $\begin{aligned} \sigma_{Y/\pi} \text{ probes correlation of } Y \text{ and } \pi \text{ from } Y^* \\ \underline{\text{at chemical freeze-out}}. \\ \text{(further rescattering/regeneration does <u>not</u> \\ \text{change the correlation.} \end{aligned}$

 Y^*/Y yield probes Y^* at thermal freeze-out (after all rescattering.

So...

- If can fit stable particles <u>and</u> resonances <u>and</u> fluctuations in same fit → no reinteraction
- If Stable particles+ Fluctuations fit gives wrong value for resonances → magnitude of reinteraction

Suitable:

Yields Independent of γ_s, λ_s ,volume

•
$$\Lambda/K^-$$
, better
- Λ corrected for $\Xi, \Omega \to \Lambda$
- K^- corrected for $\phi \to K^-K^+$

• Ξ/ϕ

Fluctuations $v(Q), \sigma_{\pi^+/\pi^-}$

$$v(Q) = \frac{\left\langle Q^2 \right\rangle - \left\langle Q \right\rangle^2}{N_{ch}}$$

$$\sigma_{N_1/N_2} = \frac{\omega_{N_1}}{\langle N_1 \rangle} + \frac{\omega_{N_2}}{\langle N_2 \rangle} - 2\frac{\langle N_1 N_2 \rangle - \langle N_1 \rangle \langle N_2 \rangle}{\langle N_1 \rangle \langle N_2 \rangle}$$

 σ_{π^+/π^-} can also be used to probe ρ, f_0 mass modification due to $\pi^+ - \pi^-$ correlations <u>undetectable or rescattered</u> resonances <u>also</u> contribute to fluctuations!!! Volume fluctuations are not well understood, and show up in all $< N^2 > - < N >^2$. Avoid them choosing observables such as

- $(\Delta Q)^2$. $\frac{\langle Q \rangle}{V}$ small, so is $\Delta V \frac{\langle Q \rangle}{V}$ (Jeon, Koch)
- Fluctuations of ratios(Jeon, Koch) Volume fluctuations irrelevant to 1st order
- For most other data-points can <u>fit</u> ΔV , $(\Delta N)^2 = V(\Delta \rho)^2 + [\Delta V < N >]^2$

$$\sigma_{\pi^+/\pi^-}$$
vs Ξ^-/ϕ

- σ_{π^+/π^-} probes T independently of γ_q
- Allowed region $\underline{narrow} \rightarrow mass modification probe$

130 GeV within band! Good agreement with non-equilibrium No freeze-out ρ, σ modification needed

$\mathsf{v}(\mathsf{Q})\mathsf{vs}\;\Lambda/K^-$

$v(Q)vs \equiv^-/\phi$

These diagrams are made with <u>static</u> fluctuations susceptible to detector response effects

use <u>dynamical</u> fluctuations $\sigma_{dyn} = \sigma - \sigma_{stat}$ Where $\sigma_{stat} \sim \frac{1}{\langle N_1 \rangle} + \frac{1}{\langle N_2 \rangle}$ obtained by mixed event technique

 σ_{dyn} robust against detector acceptance <u>but</u> needs <u>more</u> parameters ("volume") to be described \Rightarrow no diagrams. Can use it in <u>fit</u>, including one/more yields at same centrality as σ_{dyn} .

For large acceptance, can hope fitting both σ_{dyn} and $\sigma, \omega, v(Q)$

Fit exp. yields, ratios, ω, σ , $< s >= 0, \frac{Q}{B} = 0.4$ for

- Equilibrium parameters T, λ_{q,s,I_3}
- Non-equilibrium parameters γ_{q,s,I_3}
- System "volume" dV/dy

Different models have a different DoF \rightarrow Use Statistical significance (P_{true}) to judge fit quality

Non-trivial correlations/data-point sensitivity can be analyzed by Profiles in statistical significance <u>All other</u> parameters at their best fit value for point in abscissa

Fits at 130 GeV

fluctuations

- $\sigma_{\pi^+/\pi^-}^{dyn}$, $\sigma_{\overline{p}/p}^{dyn}$: STAR PRC 68, 044905 (2003), nucl-ex/0307007 Insensitive to Volume fluctuations <u>but</u> require < V > (6% centrality)
- $\omega_{h^+}, \omega_{h^-}, \omega_{h^+-h^-}, \omega_{h^-+h^+}$ STAR Nucl. Phys. A 698 (2002) 611 Need $\Delta V/V$, independent of centrality. No error bar, assume Ad Hoc 10%

Yields and Ratios

- h^{charged}, PHOBOS
 PRL (2003), nucl-ex/0201005 (6% centrality)
- $\pi, K, p, \Lambda, \Xi, \phi, K^*$ and antiparticles, STAR, various (5% centrality)

- When volume fluctuation is used as a fit parameter, both yields and fluctuations fit nicely
- Volume fluctuations needed 4 $\omega_{h^+,h^-,h+h^-}$,not4 σ^{dyn} and $\omega_{h^+-h^-}$ (as understood by Koch,Jeon).
- Fluctuations shift fitted γ_q, T w.r.t. ratios-only fit

 T, γ_q not as well determined as it could be

- As we saw earlier, $\sigma^{dyn}_{\pi,K,p}$ are not very good constraines on γ_q
- Volume fluctuation <u>essential</u> for fitting $\omega_{h^+}, \omega_{h^-}, \omega_{h^+\pm h^-}$ (if $\Delta V = 0$, $P_{true} < 0.1$ due to disagreement with these data points), <u>but</u> correlates with normalization, γ_q .

Fits at 200 $\,\mathrm{GeV}$

- $\sigma^{dyn}_{K/\pi}$: Supriya Das et al [STAR] nucl-ex/0503023
- Ratios:O. Barannikova et al [STAR] nucl-ex/0403014
- NB: All preliminary

With fluctuations, T, γ_q determined $(K/\pi + \text{ its fluctuation is very sensitive to } \gamma_q)$.

- firmly in $\gamma_q > 1, T \sim 140$ MeV,
- T, γ_q consistent with 130 GeV considering all preliminary

Some datapoints fail but no exp. systematic errors yet!

σ_{K^+/π^+} vs σ_{K^-/π^-} :	too different
$\overline{\Omega}/\Omega > 1$	not thermal: Bleicher,Liu,Aichelin

If these fitted, best fit unchanged but $P_{true} < 0.1$

Some tentative conclusions

- Ξ/ϕ vs $v(Q), \sigma_{\pi^+/\pi^-}$ fits SHM well, no indication of ρ, σ modification
- Yields, ratios, resonances and fluctuations fit reasonably well provided $\gamma_q > 1$
- very unlikely equilibrium SHM can do it
- $\Lambda(1520), K^*$ well accounted for in nonequilibrium. $\sigma_{K/\pi}$ also fits well. Consistent with sudden freeze-out!

Do it yourself: SHARE

 $http://www.physics.arizona.edu/{\sim}torrieri/SHARE/share.html$

A prediction...

It was recently shown (nucl-th/0504028) that the "horn" in the K^-/π^- yield

Can be explained by the onset of γ_q (sudden freeze-out from a Partonic plasma) at the "horn" energy.

Fluctuations in K^-/π^- should <u>also</u> rise sharply at the horn point.