Running experiments in hadron physics

ECFA Meeting

March 9 - 10, Prague

Alexander Kupčo

Institute of Physics, Center for Particle Physics, Prague

DIRAC experiment

Alexander Kupčo, Institute of Physics, Prague

DIRAC experiment

Alexander Kupčo, Institute of Physics, Prague

DIRAC experiment

surement of their lifetimes

Czech contribution to DIRAC

- Czech group lead by prof. Čechák (6 physicists + 1 engineer + 1 PhD student + 1 undergrad. student)
 - Faculty of Nuclear Sciences and Physical Engineering, CTU
 - Institute of Physics ASCR
 - Nuclear Physics Institute ASCR
- Horizontal Hodoscopes for Trigger system
- Mirrors for Cherenkov detectors
- Dosimetry measurements of radioactive expositions in the detector
- Physics: one PhD thesis
 - study of correlation of particles with small relative velocities

COMPASS

Alexander Kupčo, Institute of Physics, Prague

COMPASS

Alexander Kupčo, Institute of Physics, Prague

Joint Czech Group in COMPASS

- lead by prof. Finger
- 18 physicists and engineers, 10 graduate and 8 undergrad. students
 - Faculty of Mathematics and Physics, Charles University
 - Faculty of Mechanical Engineering, Czech Technical University
 - Faculty of Nuclear Sciences and Physical Engineering, CTU
 - Technical University in Liberec
 - Institute of Scientific Instruments, ASCR, Brno

Joint Czech Group in COMPASS

Commitments

- Polarized Target
 - upgrade in 2006 which increased the acceptance
- RICH detector for particle identification
 - design of optical imaging system
- development of multi-channel scintilator detectors for beam monitoring
- Central data recording
 - coordinators for muon-beam program

Joint Czech Group in COMPASS

CVIIT FS

Commitments

- Polarized Target
 - upgrade in 2006 which increased the acceptance
- RICH detector for particle identification
 - design of optical imaging system
- development of multi-channel scintilator detectors for beam monitoring
- Central data recording
 - coordinators for muon-beam program

DØ experiment

Alexander Kupčo, Institute of Physics, Prague

Alexander Kupčo, Institute of Physics, Prague

ECFA07, Prague

page 13

DØ Collaboration

- As of today we are:
 - ~ 670 physicists from 91 institutions
 - $\sim 50\%$ from non-US institutions (note strong European involvement)
 - $\sim 100~{\rm post-docs}, \, \sim 140~{\rm graduate}$ students

Czech Group

- members of the DØ Collaboration since 1997
- lead by M. Lokajíček and V. Šimák (6 physicists, 5 graduate student, 4 computer specialists, and 1 technician)

- 8 of us qualified as DØ authors
- 2 PhD and 1 diploma theses
- Financed by grants from Ministry of Education and by Center for Particle Physics

- As of today we are:
 - $\sim~670$ physicists from 91 institutions
 - $\sim 50\%$ from non-US institutions (note strong European involvement)
 - $\sim 100~{\rm post-docs}, \, \sim 140~{\rm graduate}$ students

ECFA07, Prague

page 15

- HV distribution boxes for muon detectors built here in Prague
- calibration system for muon trigger (Light Mixing Boxes)
- 1 year of silicon detector tests
- contribution to the building of Forward Proton Detectors (Roman Pots)
- Software: code for accessing luminosity information and for normalization of the data

- HV distribution boxes for muon detectors built here in Prague
- calibration system for muon trigger (Light Mixing Boxes)
- 1 year of silicon detector tests
- contribution to the building of Forward Proton Detectors (Roman Pots)
- Software: code for accessing luminosity information and for normalization of the data

- HV distribution boxes for muon detectors built here in Prague
- calibration system for muon trigger (Light Mixing Boxes)
- 1 year of silicon detector tests
- contribution to the building of Forward Proton Detectors (Roman Pots)
- Software: code for accessing luminosity information and for normalization of the data

- HV distribution boxes for muon detectors built here in Prague
- calibration system for muon trigger (Light Mixing Boxes)
- 1 year of silicon detector tests
- contribution to the building of Forward Proton Detectors (Roman Pots)
- Software: code for accessing luminosity information and for normalization of the data

- HV distribution boxes for muon detectors built here in Prague
- calibration system for muon trigger (Light Mixing Boxes)
- 1 year of silicon detector tests
- contribution to the building of Forward Proton Detectors (Roman Pots)
- Software: code for accessing luminosity information and for normalization of the data

- distributed computing: reconstruction on-site, MC simulation off-site
- $\bullet\,$ currently, 20 farms provide computing services for $\mathsf{D}\ensuremath{\emptyset}$
- DØ computer center in Prague since 1999 (In the beginning, we were using CESNET farms. Currently, we have our own farm built in Institute of Physics)
- we provide about 5% of total MC production (21M out of 400M events in 2006) which is usually the 4^{th} to 5^{th} largest contribution

• our annual financial contribution to DØ is paid with provided computer services

Motivation: good jet energy calibration is crucial for precision measurements at hadron-hadron colliders where most of the final states involve jets

 $E_{ptcl}^{jet} = \frac{E_{det}^{jet} - \mathcal{O}}{R_{jet} S}$

Offset (\mathcal{O}) - energy not associated with the hard interaction (U noise, pile-up from previous crossings, additional $p\bar{p}$ interactions)

Response (R_{jet}) - calorimeter response to jet

Showering (S) - losses due to showering the energy in the calorimeter out or into the jet cone

Dmitry Bandurin

Jochen Cammin Subhendu Chakrabarti Dag Gillberg

Jeroen Hegeman

Jeremie Lellouch

Mikko Voutilainen

Our responsibilities

- offset correction
- determination of absolute scale using $\gamma + jet$ events
- closure tests -
- AK is convener of JES group since autumn 2006

Alexander Kupčo, Institute of Physics, Prague

Zhiyi Liu

- DØ preliminary JES based on $100 \,\mathrm{pb}^{-1}$ sample
- approved in the end of Feb 2006
- first JES version in Run II certified in large enough kinematic range ($|\eta| < 2.5$), and reaching uncertainties competitive with Run I

Final JES for Run IIa

- will be based on full Run IIa sample of $\sim 1\,{\rm fb}^{-1}$
- goal: to improve our understanding of the jet energy calibration and to further reduce the uncertainties

• QCD

- high p_T jets
- multijet final states
- diffraction
- Top physics
 - top mass in 6-jet channel
 - $t\overline{t}$ kinematic properties (p_T spectrum)

High p_T jet production

- Iumi $8 \times$ higher than in RunI \Rightarrow reach in p_T increased from about 450 GeV up to 600 GeV
- good agreement with QCD predictions (no compositeness is seen)
- systematics (dominated by the JES uncertainty) is smaller than the PDF errors
- $\Rightarrow\,$ we can learn about gluon structure functions in proton at large x

Dijet angular decorrelations

Alexander Kupčo, Institute of Physics, Prague

- $\Delta \Phi_{dijet}$ sensitive to the additional radiation in the event
- first Run II QCD paper
- first comparison with $2\to 3~\rm NLO~QCD$ calculation at Tevatron

- data also provide tests of parton shower models in MC event generators
- CDF Run I tunes of Pythia could not disentangle perturbative effects (represented by parton shower models) from actual non-perturbative contribution from soft underlying event
- found value of PARP(67)=2.5 used in new Pythia tune (DWT) which is used also at LHC

- subject of one PhD thesis
- complete description of three jet final state by measuring all 3-jet observables (M_{3jet} , jet energy fractions in CMS, angular distributions)
- tests of 3-jet NLO QCD predictions (NLOJET++)
- studies of gluon jet properties
 (3rd leading jet is mostly a gluon one)
- improved experimental knowledge about multi-jet final states which are background for various measurements and searches of new physics (top mass, Higgs, ···)

• Diffractive dijets

- diffractive dijets more correlated in ϕ
- due to different nature of pomeron induced ISR
- thesis finished and will be defended soon

Quadrupole

Magnets

0

- Elastic slope dN/dt
- dedicated low lumi runs
- pots can be moved very close to the beam

A1D

31 m

 \Rightarrow access to small values of t

Alexander Kupčo, Institute of Physics, Prague

31 m

23 m

- Advantages: statistics, full reconstruction of event (no neutrinos)
- Disadvantages: no lepton (trigger + significant QCD background), combinatorial ambiguity
- Run I thesis $(m_t = 179 \pm 14_{(stat)} \pm 8_{(sys)} \text{ GeV})$
- Run II: vertex b-tagging ⇒ improved event selection and reduced combinatorial background
- increased luminosity \Rightarrow difficult triggering

(kinematic peak of m_{3jet} near the top mass)

- Advantages: statistics, full reconstruction of event (no neutrinos)
- **Disadvantages**: no lepton (trigger + significant QCD background), combinatorial ambiguity
- increased luminosity \Rightarrow difficult triggering (kinematic peak of m_{3jet} near the top mass)
- design and effectiveness studies of multi-jet triggers

ECFA07, Prague

page 32

- Advantages: statistics, full reconstruction of event (no neutrinos)
- **Disadvantages**: no lepton (trigger + significant QCD background), combinatorial ambiguity
- increased luminosity \Rightarrow difficult triggering (kinematic peak of m_{3jet} near the top mass)
- design and effectiveness studies of multi-jet triggers

- large instantaneous luminosity \rightarrow several $p\bar{p}$ interactions per bunch X-ing
 - design of algorithms for jet vertex finding to confirm that all 6-jets are coming from the same $p\bar{p}$ interaction
- Top properties
 - measurement of kinematic properties of $t\overline{t}$ pairs in l + jets channel