

Understanding the emission duration through femtoscopy and imaging

D.A. Brown, A. Enokizono, M. Heffner, R. Soltz (LLNL)

Workshop on Particle Correlations and Femtoscopy 15-17 August 2005

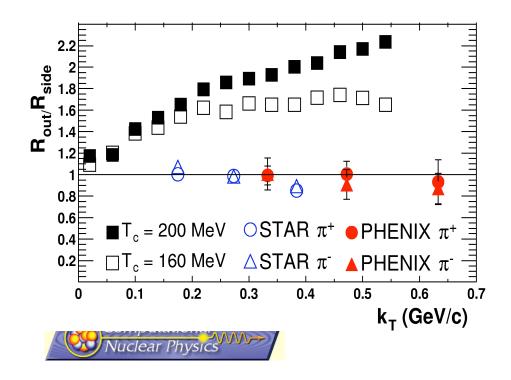
Talk Outline:

- Background
- Simple model emission function
- Source functions in this model
- Can we see this in experiment?
- CorAL Status

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

What does QGP do to HBT radii? (Rischke, Gyulassy Nucl. Phys. A **608**, 479 (1996), many others):

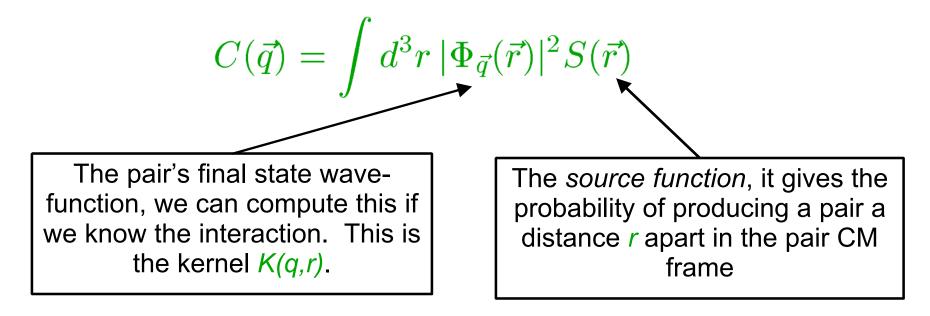
- If there is a phase-transition, hydro evolution will slow in mixed phase.
- Will lead to long-lived source
- Huge difference in Outward/Sideward radii



*R_{out}/R_{side} == 1! (in LCMS)*Experiment analysis wrong?
Coulomb correction?
Theory screwed up?
Interpretation confused?

- Instant freeze-out?
- Gaussian fits?

The Koonin-Pratt Formalism



We invert to get S(r) directly

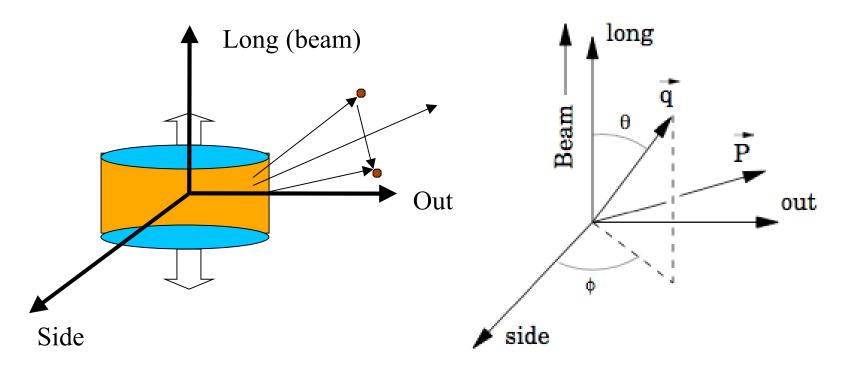
Source function related to emission function:

Computational

$$S_{\vec{P}}(\vec{r'}) = \int dr'_0 \int d^4R D(R+r/2,\vec{P}/2) D(R-r/2,\vec{P}/2)$$

We work in Bertsch-Pratt coords., in pCM

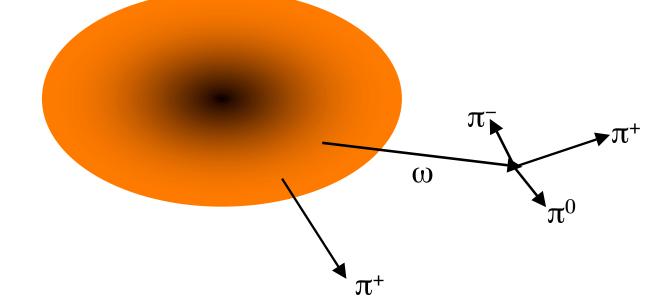
Work in Bertsch-Pratt coordinates in pair CM frame:



Boost from lab \rightarrow pair CM means lifetime effects transformed into Outwards/Longitudinal direction.

Core Halo Model

Nickerson, Csörgo", Kiang, Phys. Rev. C 57, 3251 (1998) + other papers



$D(\mathbf{r}, t, \mathbf{p}) = f D_{\text{core}}(\mathbf{r}, t, \mathbf{p}) + (1 - f) D_{\text{halo}}(\mathbf{r}, t, \mathbf{p})$

f is fraction of π 's emitted directly from core, effectively $\lambda = f^2$ in source function

Core Halo Model, cont.

From exploding core, with Gaussian shape:

 $D_{\text{core}}(\mathbf{r}, t, \mathbf{p}) \propto e^{-(E - \mathbf{p} \cdot \mathbf{v}_{\text{flow}})/T} D_{\text{gauss}}(\mathbf{r}) e^{-t/\tau_{fo}}$

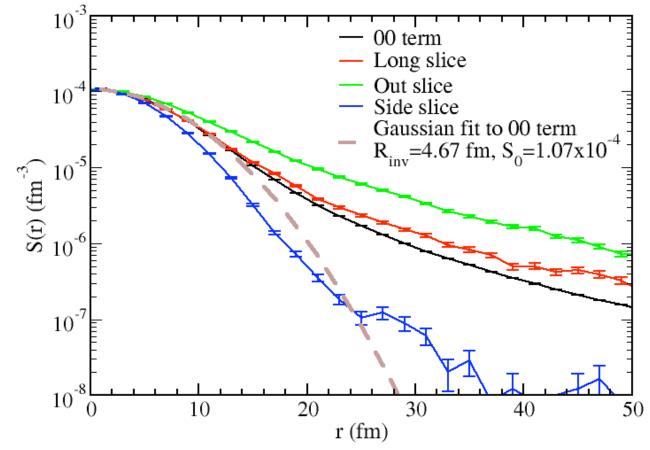
• Flow profile simple, but adjustable:

$$\mathbf{v}_{ ext{flow}} = \left\{ egin{array}{cc} lpha \mathbf{r} & ext{if} \ |\mathbf{r}| < R_{ ext{Au}} = 6.98 \ ext{fm} \ rac{2}{3} c \hat{\mathbf{r}} & ext{otherwise} \end{array}
ight.$$

• From decay of emitted resonances, ω has most likely lifetime (23 fm/c)

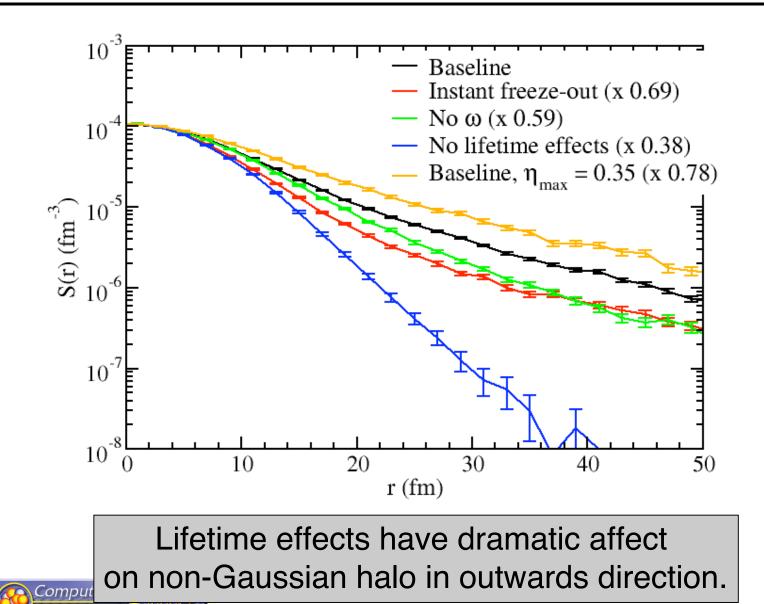
 $D_{\text{halo}}(\mathbf{r}, t, \mathbf{p}) \propto \int d\Delta t \, d^3 p_{\omega} \, P(\mathbf{p}_{\omega}, \mathbf{p}) e^{-\Delta t/\tau_{\omega}} \\ \times D_{\text{core}}(\mathbf{r} - \frac{\mathbf{p}_{\omega}}{E_{\omega}} \Delta t, t - \Delta t, \mathbf{p}_{\omega}) \\ \text{use full 3-body decay kinematics}$

Simple Model, Interesting Results



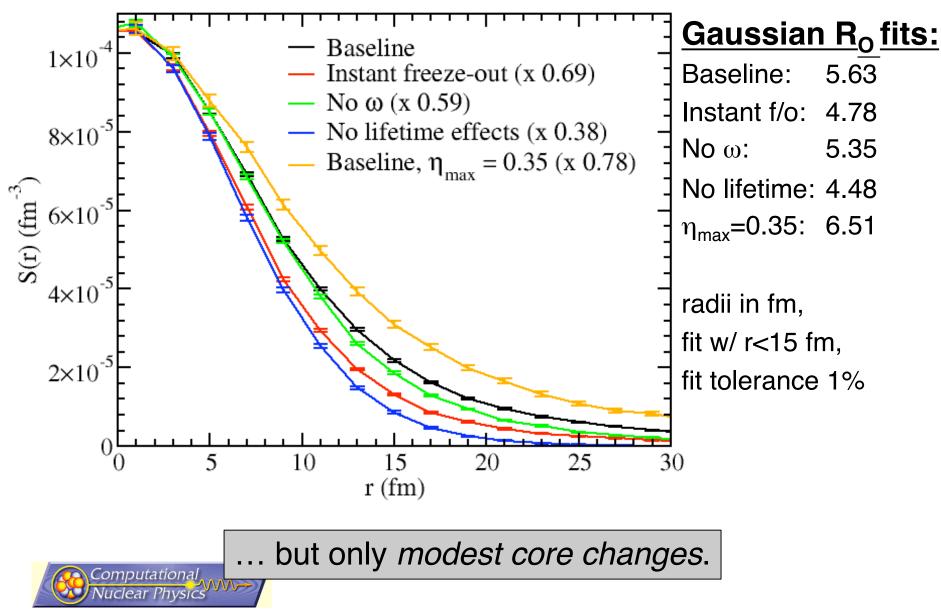
High velocity π 's get bigger boost. Boost + finite $\tau \Rightarrow$ tail, but only modest core increase, in L,O directions.

Focus on Outwards Direction

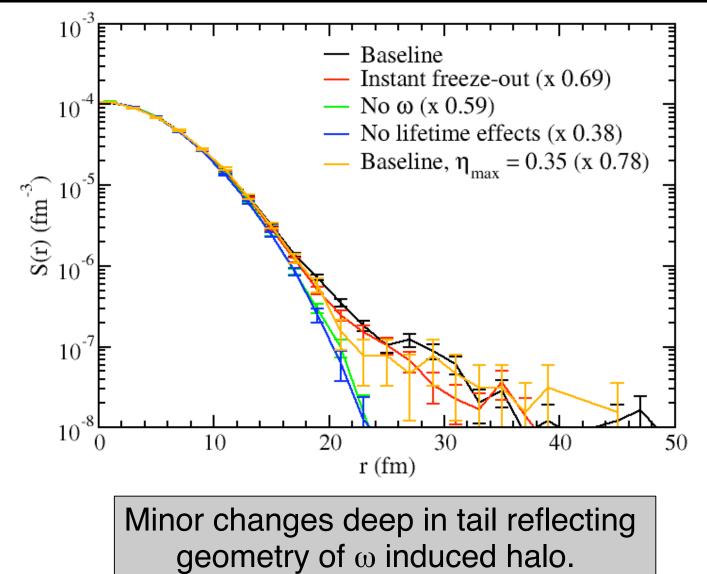


clear Physics

Focus on Outwards Direction

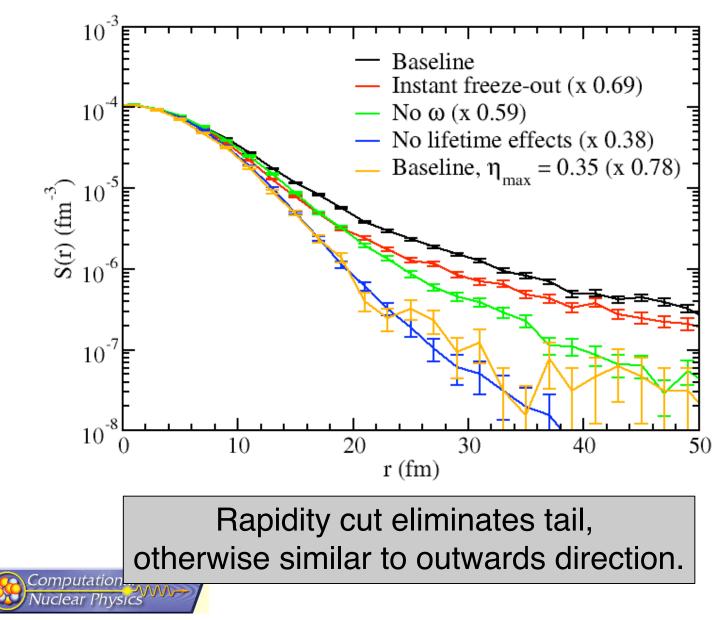


Focus on Sidewards Direction



All curves have core radii ~ 4 fm.

Focus on Longitudinal Direction



Take Home Messages from Model

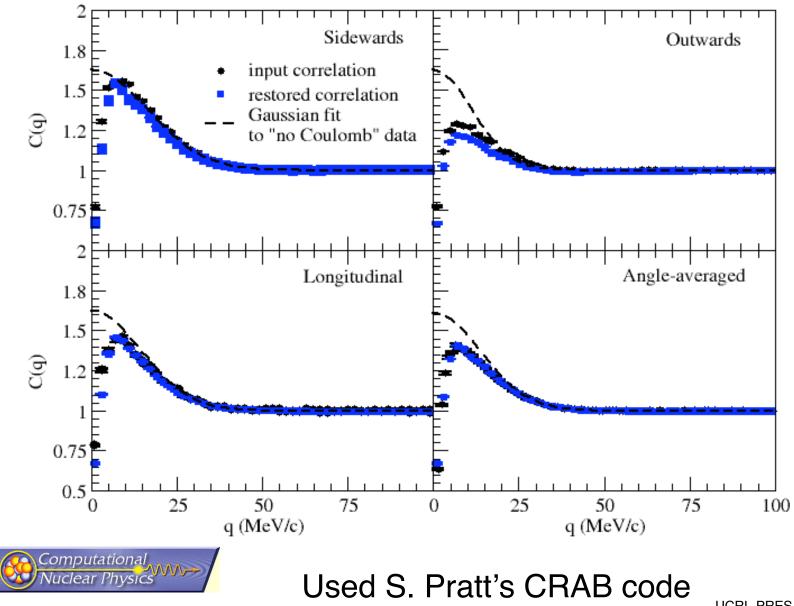
- * Need emission duration + particle motion to get lifetime effect
- * Finite lifetime can create tail, w/o changing core radii substantially
- * RHIC HBT puzzle #1 could be Gaussian fit missing tail from long lifetime
- * Resonance effects detectable, but similar to freeze-out duration effects
- * Maybe need to image 3d kaon correlations to observe system lifetime & determine whether f/o is sudden or not
- * Don't be fooled by acceptance effects

Nuclear Physics

Since source tails hide in Coulomb hole of correlation, imaging RHIC data should shed light on puzzle

Warning: You are about to see preliminary plots!

Correlations from Baseline model



Expand in YIm's and Legendre polynomials:

$$C_{\ell m}(q) - \delta_{\ell 0} = 4\pi \int_0^\infty dr \, r^2 K_{\ell}(q, r) S_{\ell m}(r)$$

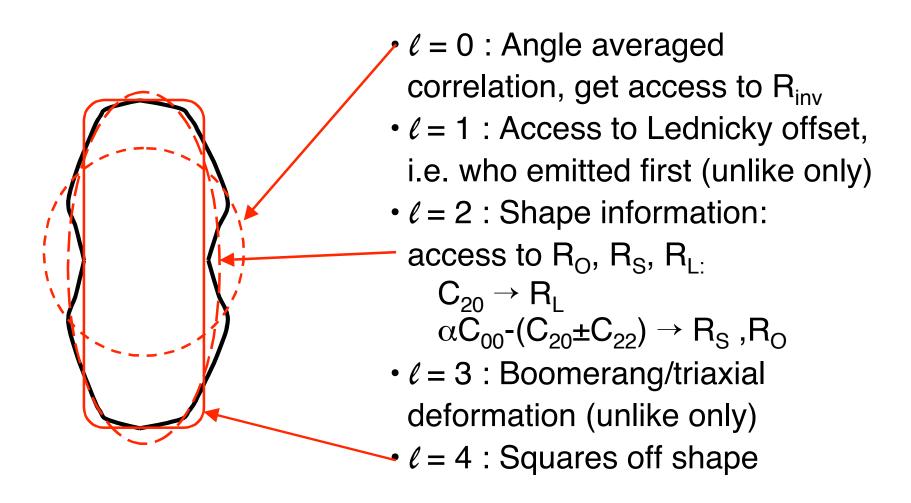
Where
$$K(\vec{q}, \vec{r}) = \sum_{\ell=0}^{\ell_{max}} (2\ell + 1) K_{\ell}(q, r) P_{\ell}(\hat{q} \cdot \hat{r})$$

$$C(\vec{q}) = \sqrt{4\pi} \sum_{\ell=0}^{\ell_{max}} \sum_{m=-\ell}^{\ell} C_{\ell m}(q) Y_{\ell m}(\hat{q})$$

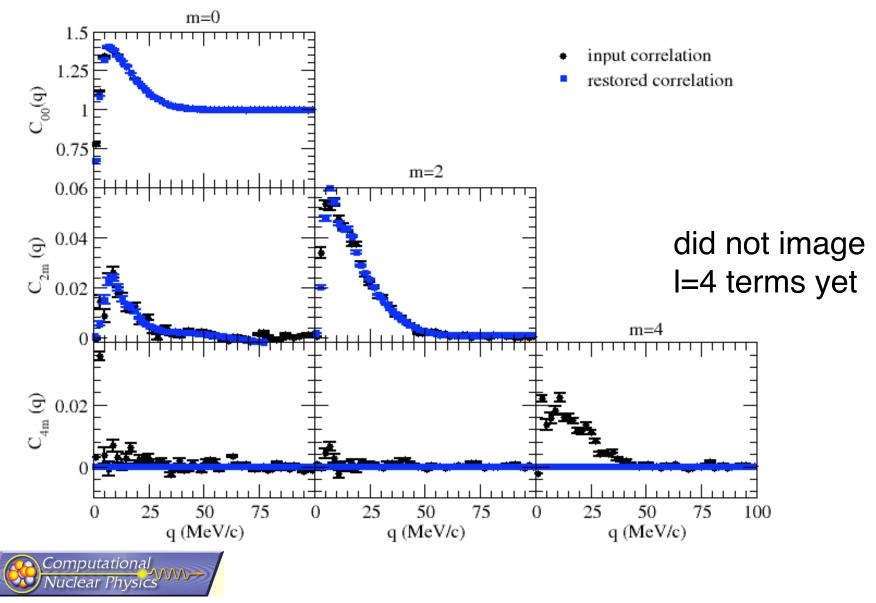
$$S(\vec{r}) = \sqrt{4\pi} \sum_{\ell=0}^{\ell_{max}} \sum_{m=-\ell}^{\ell} S_{\ell m}(r) Y_{\ell m}(\hat{r})$$

Cartesian harmonics give analogous expressions

What do the terms mean?



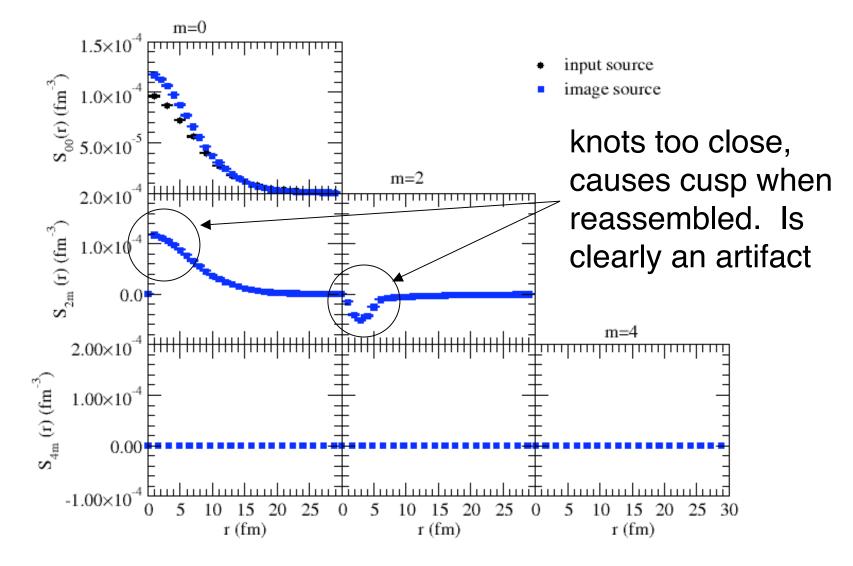
Baseline model's terms



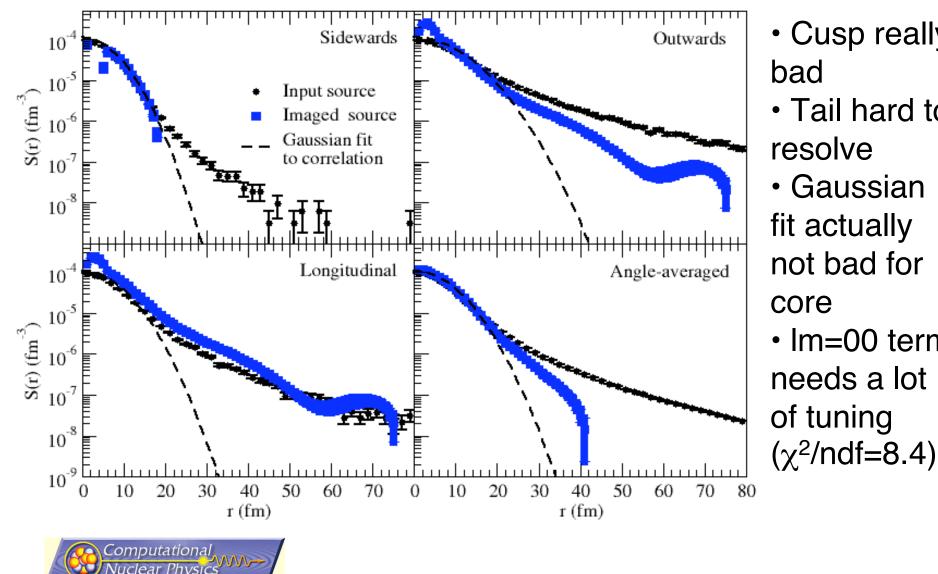
Imaging Summary

- * Use CorAL version 0.3
- * Source radial terms written in Basis Spline representation
 - knots first set using Sampling Theorem from Fourier Theory, then we optimize them to get best χ^2
 - use 3rd degree splines
- * Use full Coulomb wavefunction, symmetrized
- * Use generalized least-square for inversion
- * Use constraints to stabilize inversion
- * Cut off at finite *I*, *q* in input correlation

Terms in imaged source



Reassembled imaged source



 Cusp really bad Tail hard to resolve Gaussian fit actually not bad for core Im=00 term needs a lot of tuning

Imaging tails in 3d is hard...

- * Not shown: images of other test cases -unfortunately they don't look much different from baseline model, yet...
- * This is just first pass at imaging these test models, there is a lot of tuning to do:
 - finer q bins in correlation help a lot
 - need those /=4 terms
 - better statistics in model might help
 - newly coded "optimal knot" algorithm needs work
- * Can we get the tail's "time constant" from the images? Not easily, $R_{halo} \sim v\tau$, but lot's of different *v*'s comprise same source.

CorAL Features

- * Variety of kernels:
 - Coulomb, NN interactions, asymptotic forms
 - Any combination of p, n, π^{+-0} , K⁺⁻, Λ , plus some exotic pairs
- * Fit a 1d or 3d correlation w/ variety of Gaussian sources
- * Directly image a correlation, in 1d or 3d
- * Build model correlations/sources from
 - OSCAR formatted output,
 - Blast Wave,
 - variety of simple models
- * Build model correlations/sources in Spherical or Cartesian harmonics

CorAL Status

- * Merging of three related projects:
 - original CorAL by M. Heffner, fitting correlations w/ source convoluted w/ full kernel
 - HBTprogs in 3d by D. Brown, P. Danielewicz, imaging sources from correlation data w/ full kernels
 - CRAB (++) by S. Pratt, use models to generate correlations, sources w/ full kernels
- * Rewritten in C++, open source, nearly stand alone (depends on GSL only)
- * Developed on MacOS X, linux, cygwin
- * Time scale for 1.0 release: end of summerish

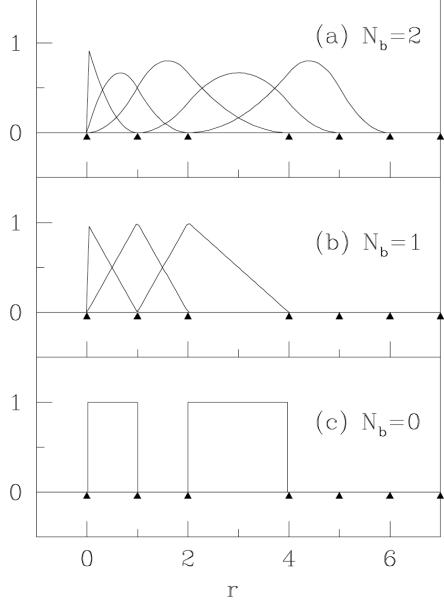
Extra Slides

Representing the Source Function

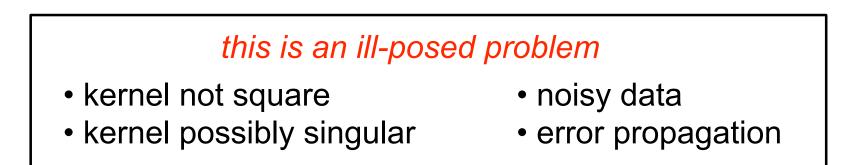
Radial dependence of each term in terms of Basis Splines:

$$S_{\ell m}(r) = \sum_{j=1}^{N_c} S_{j\ell m} B_j(r)$$

- Generalized Splines:
 - N_b=0 is histogram,
 - $N_b = 1$ is linear interpolation,
 - N_b=3 is equivalent to cubic interpolation.
- Recursion relations == fast to evaluate, differentiate, integrate
- Resolution controlled by knot placement
- Form basis for **R**², but not orthonormal



Koonin-Pratt eq. in matrix form: $\mathbf{C} = \mathbf{K} \cdot \mathbf{S}$



Practical solution to linear inverse problem, minimize χ^2 :

$$\chi^2 = \sum_{i} \frac{(C_i - \sum_j K_j S_j)^2}{\Delta^2 C_{ii}}$$

Most probable source is: $\mathbf{S} = \Delta^2 \mathbf{S} \cdot \mathbf{K}^T \cdot (\Delta^2 \mathbf{C})^{-1} \cdot \mathbf{C}^{\mathbf{obs}}$

With covariance matrix: $\Delta^2 S = (K^T \cdot (\Delta^2 C)^{-1} \cdot K)^{-1}$

Constraints for 3d problem(s)

Inversion can be stabilized with constraints. Constraints we use:

Constraint	Purpose	Functional form
$r=0$ is a maximum of $S(\mathbf{r})$ (for like pairs only)	Constrain the higher ℓ components that are not well controlled due to the r^{ℓ} dependence of terms in the spherical harmonic expansion.	$egin{aligned} rac{\partial S_{\ell m}}{\partial r}(r ightarrow 0) &= 0 \ \ orall \ell,m \ S_{\ell m}(r ightarrow 0) &= 0 \ \ \ orall \ell,m, \ \ell eq 0 \end{aligned}$
$S({f r})=0 ext{ at } r=r_{ ext{max}}$	Smooth oscillations in the source at high r caused by aliasing of statistical and experimental noise in correlation.	$S_{\ell m}(r_{ ext{max}})=0 ~~orall \ell,m$
$S({f r})=0 ext{ is flat as } r o r_{ ext{max}}$	Smooth oscillations in the source at high r caused by aliasing of statistical and experimental noise in correlation.	$rac{\partial S_{\ell m}}{\partial r}(r_{ ext{max}})=0 ~~orall \ell,m$

TABLE I: Equality constraints on the Basis Spline representation for non-spherically symmetric sources.

