WPCF, Kroměříž, August 2005

Non-Gaussian Effects in Identical Pion Correlation Function at STAR

Michal Bysterský

August 16, 2005

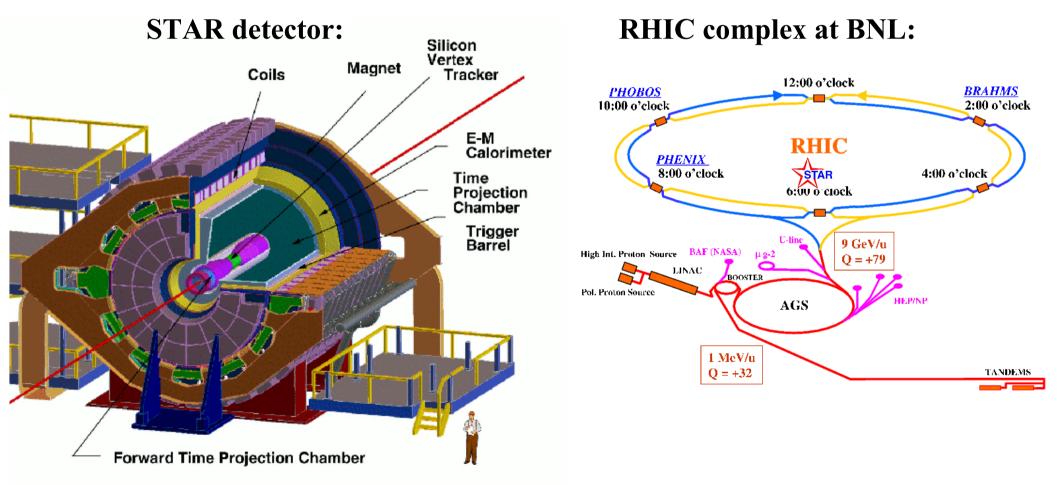
Outline

- Motivation
- STAR data
- Event and Track selection
- Identical π - π correlation function
- Bowler-Sinyukov fit to data
- Levy source distribution fit
- Edgeworth expansion
- Summary

- Why do we care about non-Gaussian issue?
 - Source distribution function is in most models non-Gaussian and standard methods of fitting experimental CF assume Gaussian source.
 - Need to parametrize source properly in order to minimize systematic errors.
- Possible methods of studying the non-Gaussian effects of CF include:
 - Source imaging, see talk by P.Danielewicz, P.Chung, D.Brown
 - Spherical harmonics, see talk by Z.Chajęcki
 - Levy stable source distribution, see talk by T.Csörgő
 - Edgeworth expansion

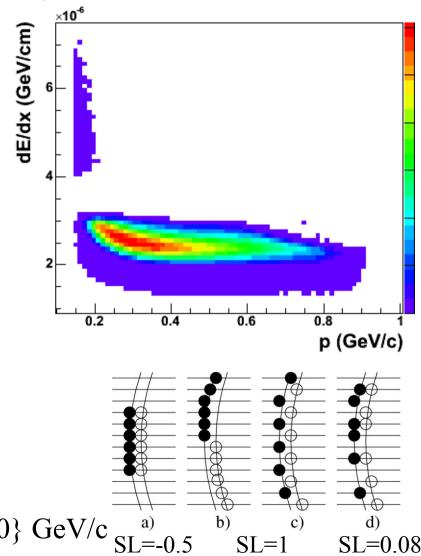
STAR data

- Au+Au collisions at energy $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$
- Year 2004 data, Full Field (0.5 T)
- ~11 M MinBias events

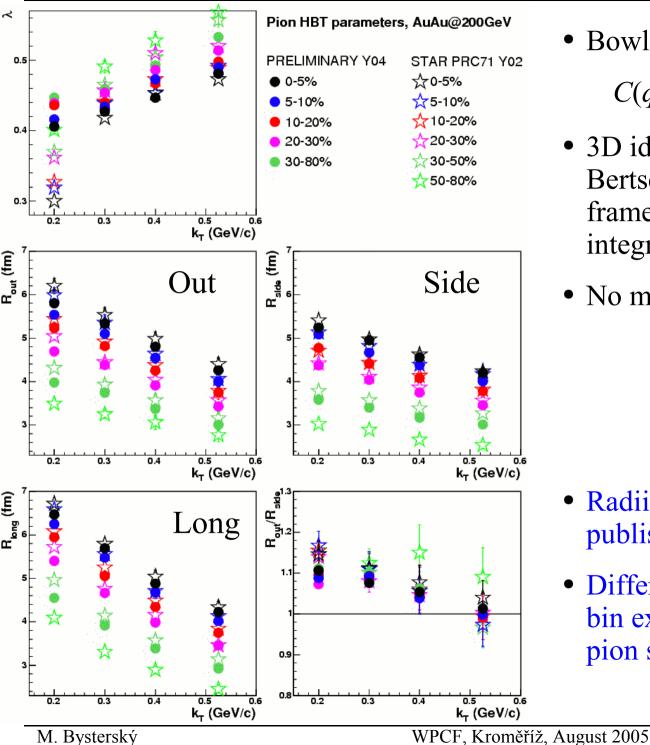


Event and Track selection

- Same cuts as in STAR, Phys. Rev. C 71 (2005) 044906
- Event cuts:
 - Centrality binning {0-5, 5-10, 10-20, 20-30, 30-80} %
 - $zVertex \pm 25 cm$
- Track cuts:
 - pion dE/dx band ± 2 s
 - remove dE/dx electron band
 - $p_{\rm T} = \{0.15, 0.80\}$ GeV/c
 - $y = \{-0.5, 0.5\}$
- Pair cuts:
 - Id: $\pi^+ \pi^+$, $\pi^- \pi^-$
 - anti-splitting (-0.5 < SL < 0.6)
 - anti-merging (max. 5 % merged)
 - $k_{\rm T} = \{0.15 0.25, 0.25 0.35, 0.35 0.45, 0.45 0.60\}$ GeV/c _{SI}



Comparison to published STAR data



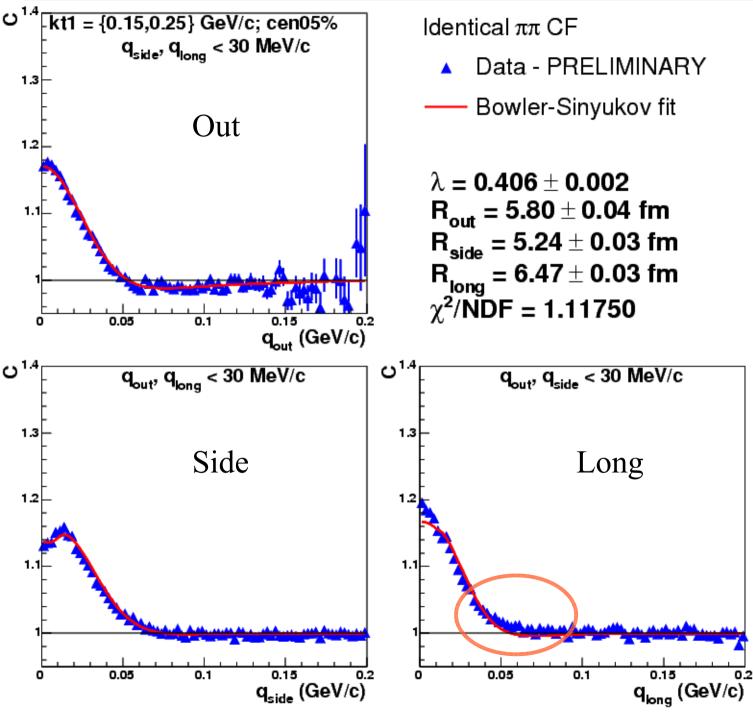
• Bowler-Sinyukov fit to data

 $C(q) = (1-\lambda) + \lambda K_{c}(1 + \exp(-\sum R_{ij}^{2}q_{i}q_{j}))$

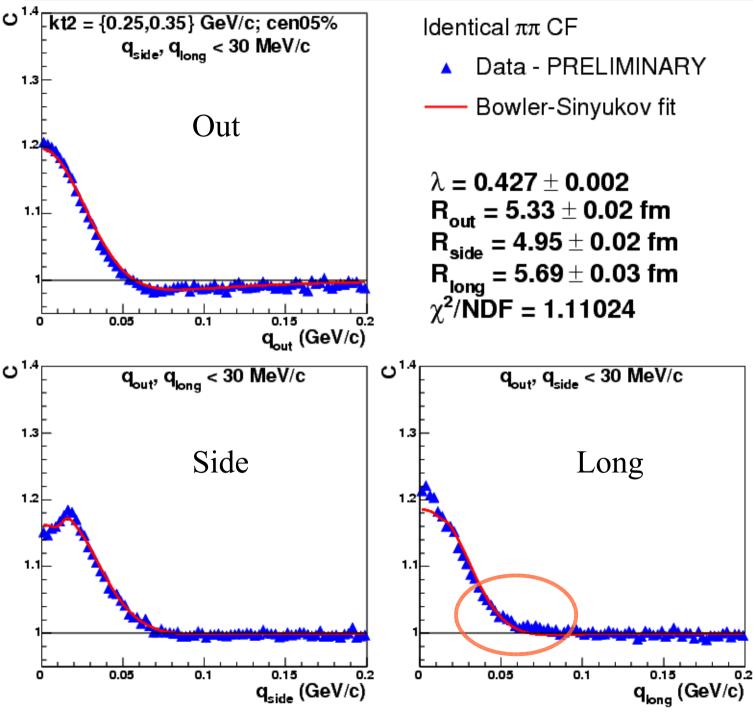
- 3D identical pion CF is fit using the Bertsch-Pratt parametrization in LCMS frame without crossterms in asimuthally integrated analyses
- No momentum resolution correction yet

- Radii are consistent within errors with published STAR PRC71 data
- Difference in lambda in the lowest kT bin explained by improved purity of pion sample

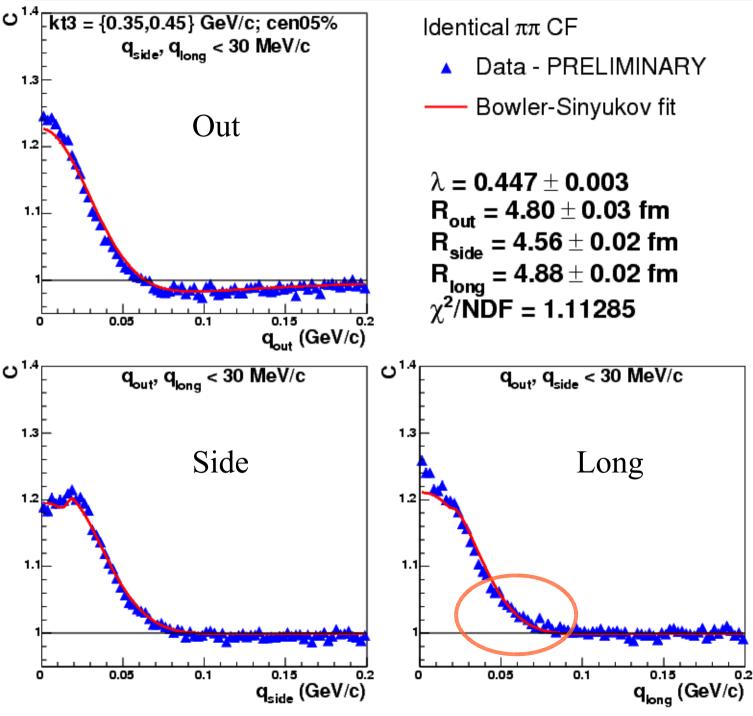
6



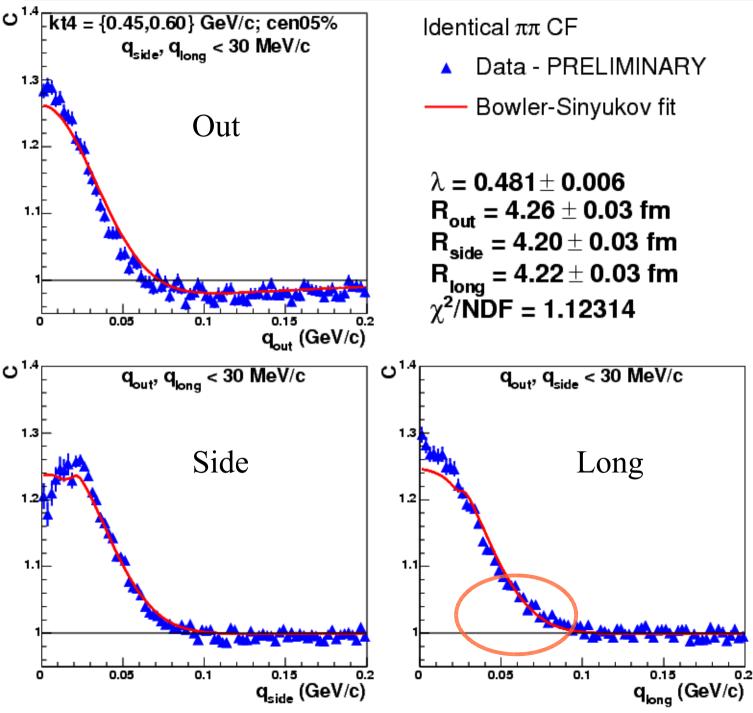
- All three radii $R_{0,s,l}$ decrease with k_{T}
- Non-Gaussian shape mostly visible in long direction



- All three radii $R_{0,s,l}$ decrease with k_{T}
- Non-Gaussian shape mostly visible in long direction



- All three radii $R_{0,s,l}$ decrease with k_{T}
- Non-Gaussian shape mostly visible in long direction



• λ increases with $k_{\rm T}$

• All three radii R_{osl}

decrease with $k_{\rm T}$

direction

• Non-Gaussian shape

mostly visible in long

Levy source distribution fit

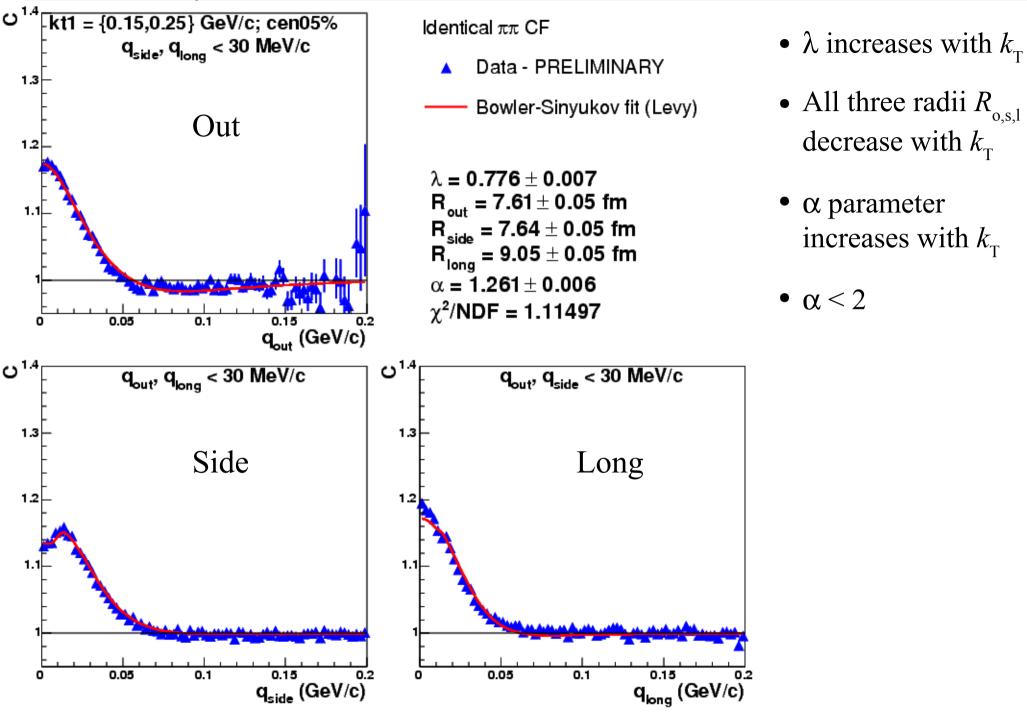
- T.Csörgő, *et al.*: Bose-Einstein correlations for Levy stable source distributions, Eur.Phys.J. C36(2004)67
- The general form of two-particle BECF

 $C(q) = 1 + \lambda \exp(-(\sum R_{ij}^2 q_i q_j)^{\alpha/2})$

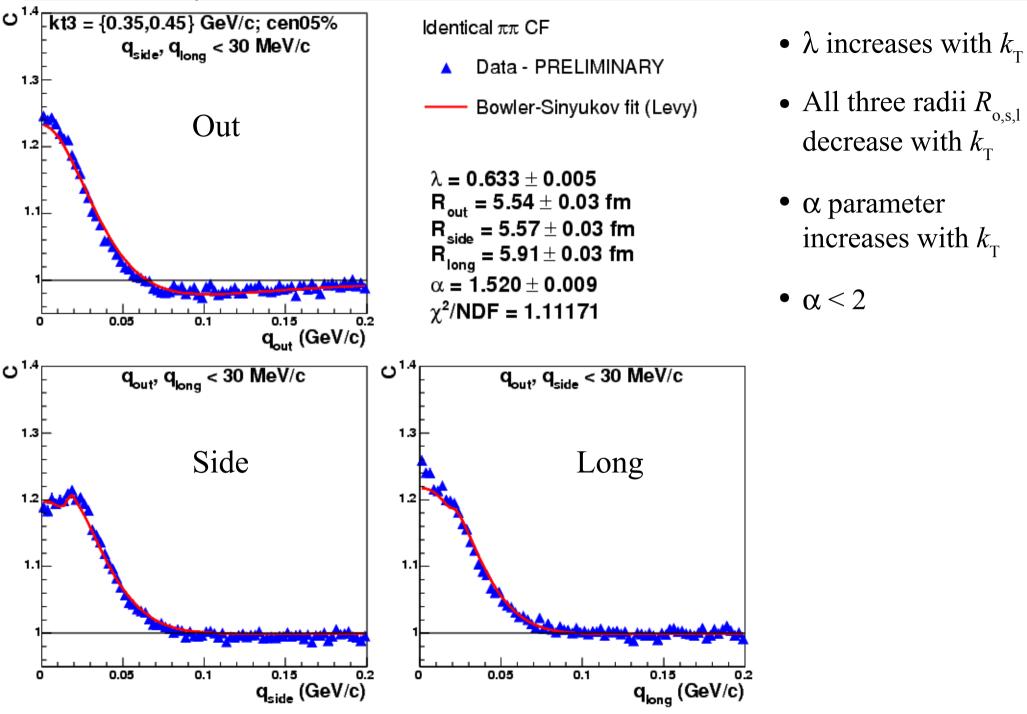
- $0 < \alpha \le 2$...Levy index of stability
- $\alpha < 2$... CF becomes more peaked than a Gaussian and it develops longer tails
- Taking into account the Coulomb effect, Levy source distribution fit to data

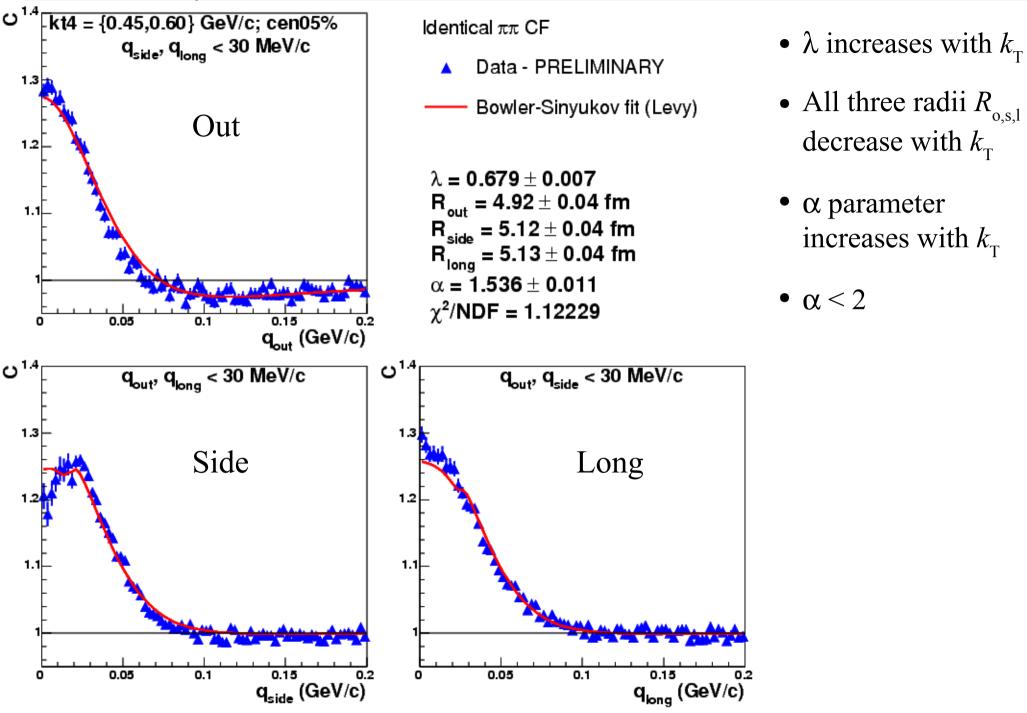
 $C(q) = (1-\lambda) + \lambda K_{c}(1 + \exp(-(\sum R_{ij}^{2}q_{i}q_{j})^{\alpha/2}))$

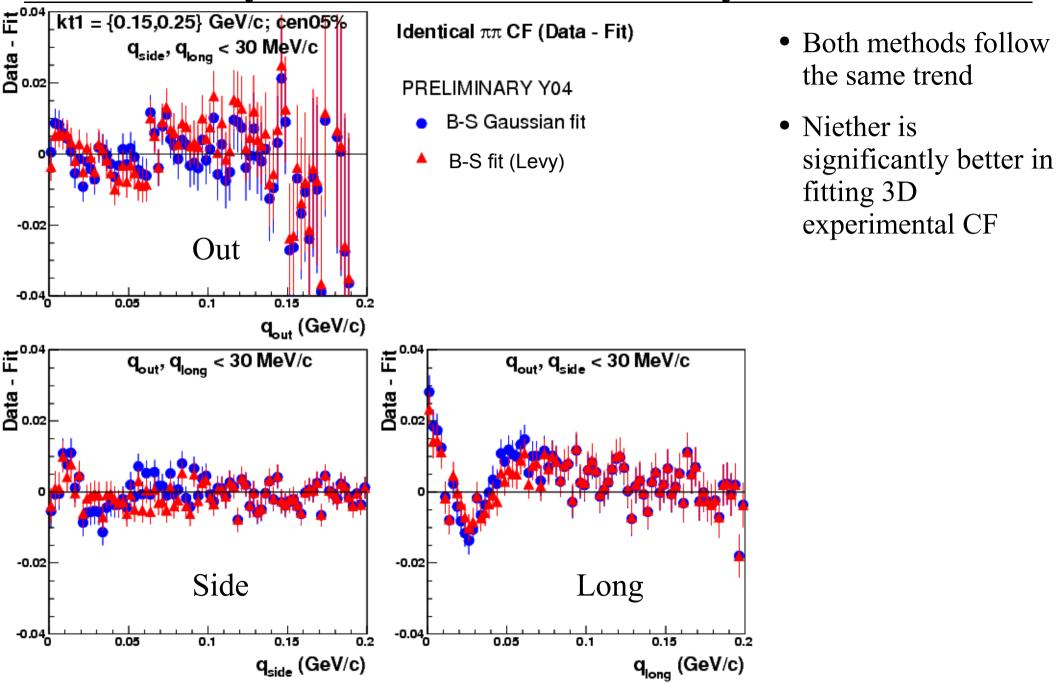
• Using Bertsch-Pratt parametrization in LCMS frame, asimuthally integrated analyses, $R_{ii}=0$ i $\neq j$

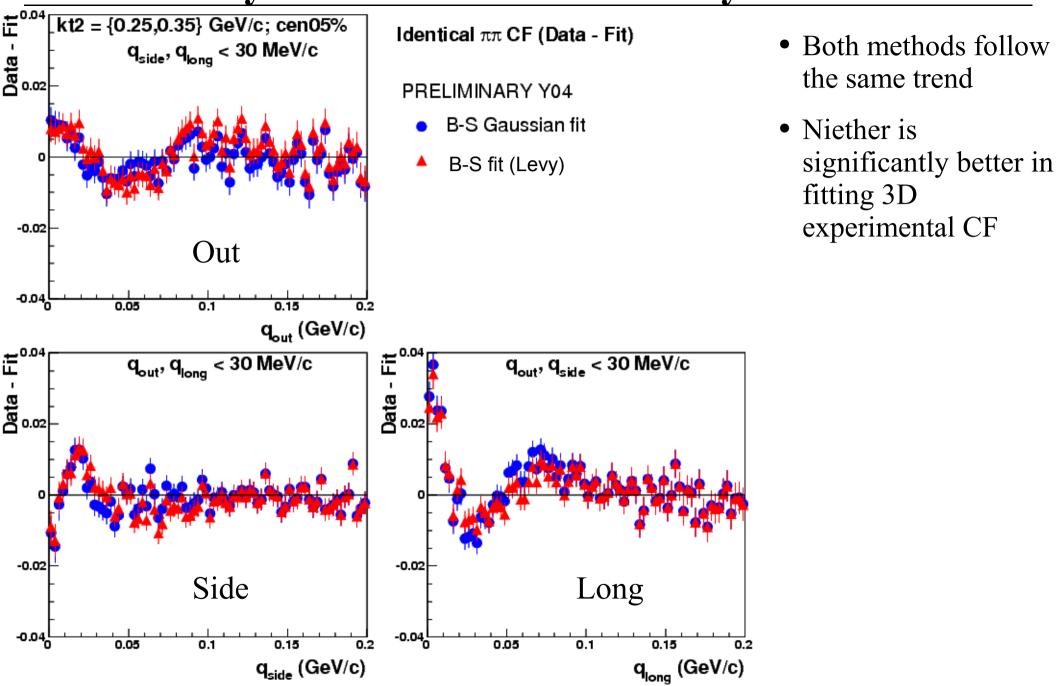


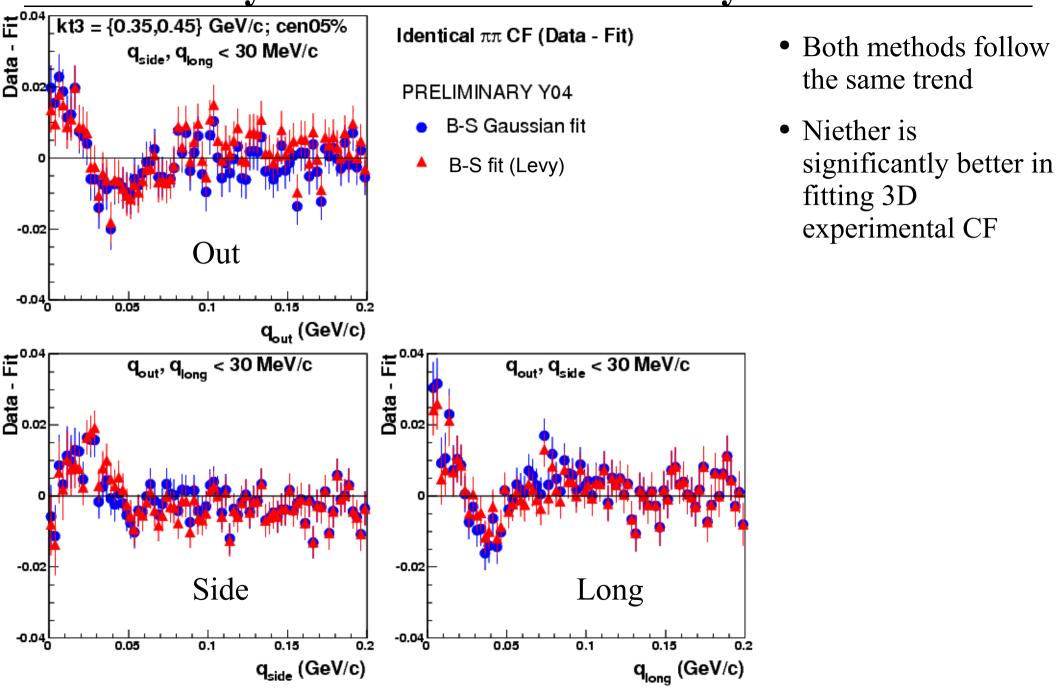


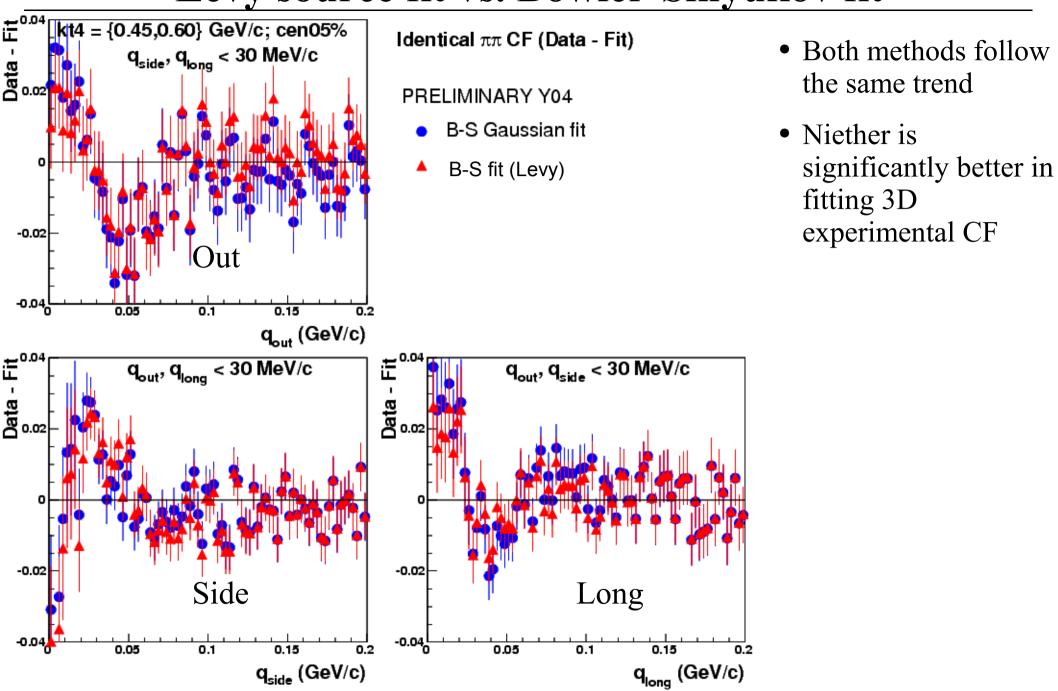






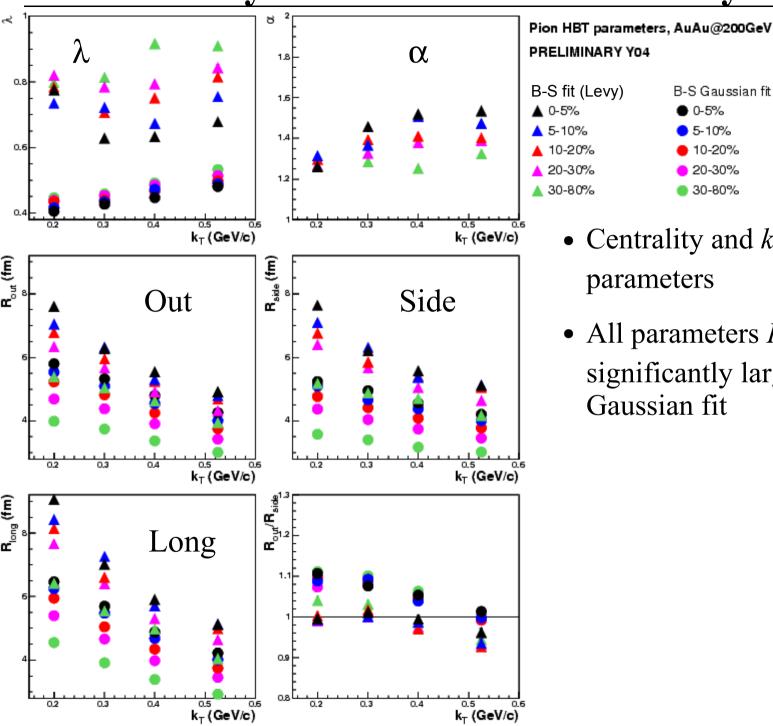






5-10%

10-20%



parameters • All parameters $R_{0.s.1}$ and λ are significantly larger when compared to Gaussian fit

• Centrality and k_{T} dependence of fit

B-S Gaussian fit

0-5%

5-10%

10-20%

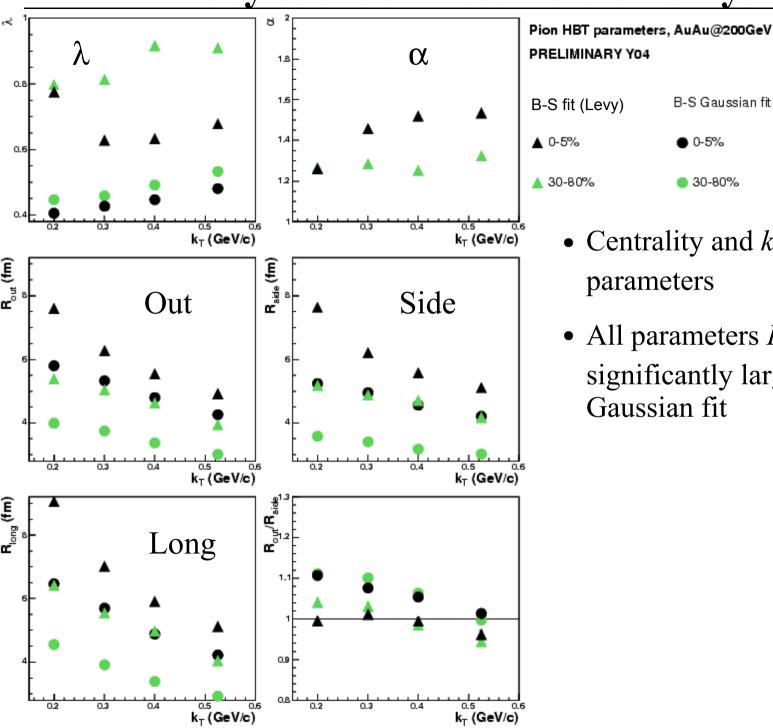
20-30%

30-80%

20

M. Bysterský

WPCF, Kroměříž, August 2005



M. Bysterský

- PRELIMINARY Y04 B-S Gaussian fit B-S fit (Levy) ▲ 0-5% 0-5% 30-80% 30-80%
 - Centrality and k_{T} dependence of fit parameters
 - All parameters $R_{0.s.l}$ and λ are significantly larger when compared to Gaussian fit

- Method suggested by T.Csörgő, *et al.*, Phys.Lett. B489(2000)15, to study deviations from Gaussian CF
- Edgeworth expansion arround 3D Gaussian in B-S procedure

$$C(q_o, q_s, q_l) = (1 - \lambda) + \lambda K_{\text{coul}}(q_{\text{inv}}) + \lambda K_{\text{coul}}(q_{\text{inv}}) \cdot e^{-q_o^2 R_o^2 - q_s^2 R_s^2 - q_l^2 R_l^2} \times \left[1 + \sum_{n=4, n \text{ even}}^{\infty} \frac{\kappa_{o,n}}{n!(\sqrt{2})^n} H_n(q_o R_o)\right] \times \left[1 + \sum_{n=4, n \text{ even}}^{\infty} \frac{\kappa_{s,n}}{n!(\sqrt{2})^n} H_n(q_s R_s)\right] \times \left[1 + \sum_{n=4, n \text{ even}}^{\infty} \frac{\kappa_{l,n}}{n!(\sqrt{2})^n} H_n(q_l R_l)\right],$$

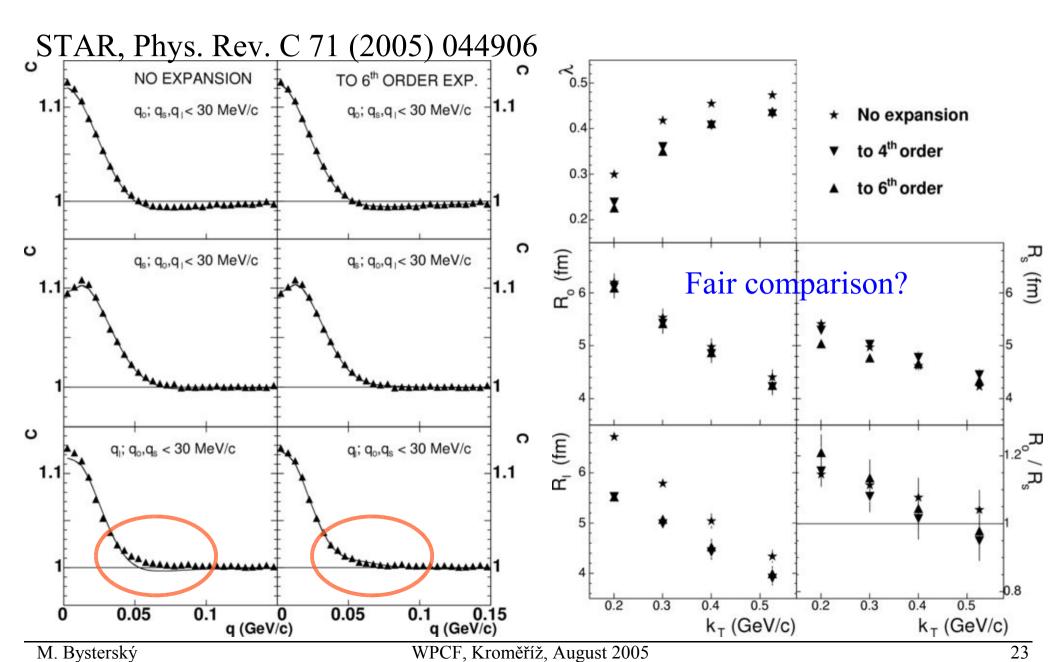
• Unable to find the physical interpretation of the fit parameters, it is not clear how to compare extracted parameters to models that assume Gaussian CF

Numbr of parameters

Gaussian	4
4th order	7
6th order	10

Edgeworth expansion fit to identical π - π CF

• Expansion up to 6th order is sufficient.



Summary

- Large statistics of year 2004 data ~11 M MinBias Au+Au events at $\sqrt{s_{_{NN}}} = 200$ GeV, is being processed with the extraction of the $k_{_{T}}$ dependence of interferometry parameters for 5 centrality bins.
- Gaussian fit to experimental CF is consistent within errors with STAR published data.
- Levy source distribution does not fit the experimental CF significantly better when compared to standard Gaussian fit.
- Edgeworth expansion is an improvement but there is no clear interpretation of higher order fit parameters yet.
- It seems that at RHIC Au+Au collisions Gaussian parameterization is sufficient to represent experimental CF.

Thank you

Extra slides

Edgeworth expansion

- Method suggested by T.Csörgő, *et al.*, Phys.Lett. B489(2000)15, to study deviations from Gaussian CF
- Edgeworth expansion arround 3D Gaussian in B-S procedure

$$C(q_o, q_s, q_l) = (1 - \lambda) + \lambda K_{\text{coul}}(q_{\text{inv}}) + \lambda K_{\text{coul}}(q_{\text{inv}}) \cdot e^{-q_o^2 R_o^2 - q_s^2 R_s^2 - q_l^2 R_l^2} \times \left[1 + \sum_{n=4, n \text{ even}}^{\infty} \frac{\kappa_{o,n}}{n!(\sqrt{2})^n} H_n(q_o R_o)\right] \times \left[1 + \sum_{n=4, n \text{ even}}^{\infty} \frac{\kappa_{s,n}}{n!(\sqrt{2})^n} H_n(q_s R_s)\right] \times \left[1 + \sum_{n=4, n \text{ even}}^{\infty} \frac{\kappa_{l,n}}{n!(\sqrt{2})^n} H_n(q_l R_l)\right],$$

• Unable to find the physical interpretation of the fit parameters, it is not clear how to compare extracted parameters to models that assume Gaussian CF

STAR, Phys. Rev. C 71 (2005) 044906

/	2		、 <i>,</i>	
$k_T \; (MeV/c)$	150 - 250	250 - 350	350 - 450	450-600
λ	0.30 ± 0.01	0.42 ± 0.01	0.45 ± 0.01	0.47 ± 0.01
$\lambda (4^{\text{th}} \text{ ord.})$	0.24 ± 0.01	0.36 ± 0.01	0.41 ± 0.01	0.43 ± 0.01
$\lambda~(6^{\rm th}~{\rm ord.})$	0.23 ± 0.01	0.35 ± 0.01	0.41 ± 0.01	0.44 ± 0.01
R_o	6.16 ± 0.01	5.51 ± 0.01	4.88 ± 0.02	4.32 ± 0.02
R_o (4 th ord.)	6.07 ± 0.04	5.40 ± 0.03	4.75 ± 0.03	4.14 ± 0.04
$\kappa_{o,4}$	0.37 ± 0.05	0.36 ± 0.04	0.33 ± 0.05	0.40 ± 0.06
R_o (6 th ord.)	6.05 ± 0.05	5.40 ± 0.04	4.78 ± 0.04	4.17 ± 0.04
$\kappa_{o,4}$	0.53 ± 0.11	0.45 ± 0.10	0.20 ± 0.11	0.22 ± 0.13
$\kappa_{o,6}$	0.83 ± 0.39	0.53 ± 0.38	0.63 ± 0.44	-0.84 ± 0.53
R_s	5.39 ± 0.01	4.93 ± 0.01	4.53 ± 0.01	4.14 ± 0.02
R_s (4 th ord.)	5.27 ± 0.03	4.98 ± 0.03	4.68 ± 0.03	4.36 ± 0.03
$\kappa_{s,4}$	0.22 ± 0.04	-0.03 ± 0.04	-0.27 ± 0.04	-0.50 ± 0.05
R_s (6 th ord.)	5.01 ± 0.05	4.74 ± 0.04	4.57 ± 0.04	4.26 ± 0.04
$\kappa_{s,4}$	0.99 ± 0.10	0.79 ± 0.10	0.16 ± 0.11	-0.07 ± 0.13
$\kappa_{s,6}$	3.07 ± 0.35	3.21 ± 0.37	1.71 ± 0.44	1.80 ± 0.51
R_l	6.64 ± 0.02	5.72 ± 0.02	4.94 ± 0.02	4.25 ± 0.02
R_l (4 th ord.)	5.47 ± 0.04	4.92 ± 0.03	4.33 ± 0.04	3.82 ± 0.04
$\kappa_{l,4}$	1.60 ± 0.06	1.25 ± 0.05	1.04 ± 0.06	0.78 ± 0.06
$R_l \ (6^{\text{th}} \text{ ord.})$	5.01 ± 0.05	5.01 ± 0.04	4.43 ± 0.04	3.91 ± 0.04
$\kappa_{l,4}$	1.32 ± 0.07	0.70 ± 0.07	0.54 ± 0.09	0.32 ± 0.11
$\kappa_{l,6}$	-1.76 ± 0.29	-2.82 ± 0.29	-2.41 ± 0.35	-2.12 ± 0.43

Correlation function for two identical bosons

• CF:

$$C_2(p_i, p_j) = \frac{P_2(p_i, p_j)}{P_1(p_i)P_1(p_j)} = 1 + \langle \cos(q \cdot r) \rangle$$

$$q = p_i - p_j$$

$$r = x - y$$

$$k = \frac{1}{2} (p_i + p_j)$$

$$C_2(p_i, p_j) = \frac{P_2(p_i, p_j)}{P_1(p_i)P_1(p_j)} = 1 + \langle \cos(q \cdot r) \rangle$$

$$q = p_i - p_j$$

$$p_i$$

$$p_i$$

$$p_j$$

• Bowler-Sinyukov fit in 3D Bertsch-Pratt parametrization: $C_{2}(\vec{q}, \vec{k}) = (1 - \lambda(\vec{k})) + \lambda(\vec{k})K_{\text{coul}}(q_{\text{inv}}) \left(1 + \exp\left(-R_{\text{out}}^{2}(\vec{k})q_{\text{out}}^{2} - R_{\text{side}}^{2}(\vec{k})q_{\text{side}}^{2} - R_{\text{long}}^{2}(\vec{k})q_{\text{long}}^{2} - 2R_{\text{outlong}}^{2}(\vec{k})q_{\text{out}}q_{\text{long}}\right)\right)$

 $K_{\text{coul}}(q_{\text{inv}}) =$ squared Coulomb wavefunction integrated over source R = 5 fm $\lambda(\vec{k}) =$ correlation strength, chaoticity

