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e Bose-Einstein correlations in plane wave approximation:
eCentral limit theorem (CLT): Gaussian sources
eGeneralized CLT: Levy stable laws
e Two and three partide correlations
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e At second order phase transitions: measuring critical exponent
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Bose-Einstein correlations
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«  Two-particle spectrum (momentum-distribution):
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Approximations: Plane-wave, no multiparticle symmetrization, thermalization ...



Non-Gaussian distributions

Of course, the source does
NOT have to be Gaussian

— Non-Gaussian tails
— Lowg bins

One can check, if the correlation
function is really Gaussian or not

The Gaussian assumption can
potentially cause results to be
meaningless
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2d examples of hon-Gaussian correlations
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B@ample of NA35 S+Ag 2d correlation data, and a Gaussian fit to it (lhs) which misses the
peak around q=0. The rhs shows a 2d Edgeworth expansion fit to ES802 Si+Au data at AGS
(upper panel) compared to a 2d Gaussian fit for the same data set (lower panel).

Note the difference in the vertical scales.




Selfsimilarity, Lévy stable laws
T = Zm

Hence the distribution of the sum z is obtained as an n-fold convolution,

f(g) = /d:;r:l...d:n,nfl(ml)...fn(a:n)5(:1: — Ly — Teee. — Xy)
fla) =11 fi(a)
f(q) = exp (igd — [vq|*),

fila) = exp(igd; — |vql¥), 11 /(@) = exp (g6 — [vq|*),
=1

1 = X 5 =>4,
j— i=1



Bose-Einstein C: Plane wave approximation

experimental conditions:
i) The correlation function tends to a constant for large values of the relative

No(ki, k e
Calks, o) = 2L ka) momentum q = ky ~ k.

~ Ni(ky) Ny(ko) ii) Near |q| =0, the correlation function deviates from its asymptotic, large
\q| value in a certain domain of its argument.

iti) The two-particle correlation function is related to a Fourier transformed
space-time distribution of the source.

S(x, k) = f(x) g(k), /d:}:‘ i) = 1, /dk:g(k) = (n3,
Ni(k) = /d:}: S(z, k) = g(k).
Ng(kljkg) = /(1.’13‘1(1.’132 S(Qﬂ'l?kl)S(ﬂ?Q,kg) |¢k1,k2(ml;m2)‘2-

1 . : : :
Whey Jog (01, BT = " lexp(ik1z1 + ikoxa) + exp(ikize + ikox1)] .
A

Co(k1,k2) =1+ |f(q)|%,

flq) = / dz exp(igz) f(x), q = ki — k.



Extra Assumption: ANALYTICITY
Co(k1, ko) =1+ |JF(Q12)|23

f(qm) = /dﬂf exp(i%gﬂf) f(il»‘)a qi12 = k1 — ko.
flq) = 1 +iglx) — ¢z /2 + ..

C(q) =1+ |f(@)f =2 — ¢*((z%) — (2)?) = 1 + exp(—¢*R?),

R =/(a?) -




Limit distributions, Lévy laws

The characteristic function for limit distributions is known also in the case,
when the elementary process has infinite mean or infinite variance.
The simplest case, for symmetric distributions is:

Exact result f(q) = exp (igd — |vq|®),

: = . 1 5
Small q expansion f(q) =1+ igxrg — §|qR|

This is not analytic function. The only case, when it is analytic,
corresponds to the a = 2 case.

The general form is

Clq: o) = 1+ exp (—|qR|?).

where 0 <o <= 2is the Lévy index of stability. EXACT resuit
4 parameters: center x,
scale R,

index of stability o
asymmetry parameter [3



Examples in 1d
Cauchy or Lorentzian distribution, a =1

1 R
f(:r) - ;RQ -+ (iI? — iI?g)Qj

C(q)=1+exp(—|qR]|).

—o0 < x < 00,

Asymmetric Levy distribution, has a finite, one sided support,
a=1/2, =1

flz) = \/SE?T(:L‘ — ]:;:0)3/2 = (_8(:17 }j ZE‘D)) i F
C(g)=1+exp (—\/E) .




Lévy sources and BE/HBT correlations
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a = 0.4: very peaked correlation function,
strongly decreasing source density with power-law tail



Lévy sources and BE/HBT correlations
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a = 0.8: peaked correlation function,
decreasing source density with power-law tail



Lévy sources and BE/HBT correlations
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a = 1.2: less peaked correlation function,
less decreasing source density with power-law tail



Lévy sources and BE/HBT correlations
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a = 1.6: oorrelation function can be mistaken as Gaussian
source by eye looks like a Gaussian on lin-lin scale,
but has a power-law tail on the log-log scale



Lévy sources and BE/HBT correlations
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a = 2.0: really Gaussian correiauon runcuon,
really Gaussian source density,
power-law tail is gone



3d generalization

The case of symimetric Levy distributions is solved by

f(q) = exp (%qxﬂ — —| Z R? .qiq;|? )

t,g=1
Multivariate symmetic Lévy Einstein correlations
2 o
Clq)=1+exp|—| > R}qq 2)
i,7=1,3

the corresponding space-time distribution is given by
in terms of R?, the inverse of the radius matrix

. 1 o e
fols) = o 5o T f At (t5(x)) 2 ypoa(t5(2)e ™,
2 2 2
s(x)=|R™ x| s(x) = |[R'x| = s 44y e
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Generalized 3d generalization

The case of symmetric Levy distributions for factorized time dependence

Co(ki ko) =1+ Aexp |—( Y. Riqg)® — (A£B2) 7

i,]=8,0,!

Correlation function: invariant
Q decomposition: invariant Buda-Lund variables
the Lévy version of invariant Buda-Lund variables

Clkr ko) =1+ Nexp (—|R_Q=|= — |[RyQy* - |ReQL|™),

Q: = Mt 1 COSh(@h = ﬁ) — M2 COSh(yg = ﬁ)
QH = Mt 1 Sinh(y1 = ﬁ) — Mt 2 Sinh(yg — ﬁ)

QL=/Ci 6}



2d Lévy sources, linear scale

a=0.6

problem for symmetric Lévy sources

y

X

s /X2 +12/Y? scaled coordinate; 1d



2d Lévy sources, linear scale
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2d Lévy sources, linear scale

oa=1.2




2d Lévy sources, linear scale
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2d Lévy sources, linear scale
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Finally, a Gaussian case!
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For a<2: power-law tail



Asymmetric Lévy & 3-particle correlations

Normalized three-partide cumulant correlation function

1, 2
w(1,2,3) = n(1,2,3)
2\/52(13 2)532(2: 3)’%2(31 1)
6 o QT I \
w(1,2,3)=cos 4 §R tan(T)[ZHq@ﬂ sign(q;;)| ¢
\ (i?j) A
w = cos().

The angle ¢ is directly proportional to (3, the asymmetry



(Multi)fractal jets in QCD

B. Andersson, P. Dahiquist, G. Gustafson, Nucdl. Phys. B328 (1989) 76

G. Gustafson, A. Nilsson, Nucl. Phys. B355 (1991) 106, Z. Phys. C52 (1991) 533
G. Gustafson, Nucl. Phys. B392 (1993) 251

J. Samueslon, Yu. Dokshitzer, W. Ochs, G. Wilk....

2 2
Cas (21 + z3)
dP = diﬂl dmg
27 (1—z)(1 — 23)
K K K Ty + 21+ 23 = 2
L L 5 5
kJ_ =W (1 — 331)(1 — ﬂ!g)
1 1 — L1
y=—log| ——
2 1 — I3
12 L2 L2 L2 -L2 L2
@ DR © Ca, dk?
(™
Figure 1: (a) The phase space available for a gluon emitted by a high energy qq system is a dP = kz dy
triangular region in the y-& plane. (b) If one gluon is emitted at (v, k1) the phase space for a T 18
second (softer) gluon 1s represented by the area of this folded surface. (c) Each emitted gluon "
increases the phase space for the softer gluons. The total gluonic phase space can be described .
by this multifaceted surface. k:l: — kJ_ CXP(iy) <W

a triangular region in the (y, s = log(k?))-plane



(Multi)fractal jets in QCD
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Figure 1: (a) The phase space available for a gluon emitied by a high energy qg system is a
triangular region in the y-k plane. (b) If one gluon is emitted at (y,, k1) the phase space for a
second (softer) gluon is represented by the area of this folded surface. (c) Fach emitted gluon

increases the phase space for the softer gluons. The total gluonic phase space can be described
by this multifaceted surface.

The baseline forms a (multi)fractal, and the fractal dimension 1s

given by the anomalous dimension of QCD: 1+(3 a /21y

Lund string, with string tension of 1 GeV/fm: maps the fractal m momentum space to
coordinate space, without changing the fractal dimension.



Fits to NA22 and UA1 Bose-Einstein (BEC) data

Stretched exponential fit bl !

Best fits to UAT and NA22 two-particle correlations using a Lévy stable law
@, UAl NA22
O Parameter Value Error Value Error
1.34 + 0.03 0.95 (fixed)
2 1.85 +0.07 1.15 +0.17
6.36 + 0.33 1.33 + 0.30
0.49 + 0.01 0.67 + 0.07
56.5/42 = 1.35 27.67/35 = 0.769
6.6 % 80.6%

a(QCD) = n(BEC)/6
™M UA1:0.1~0.125+- 0.005
it @ w0 NA220.14 ~0.23 +- 0.05

NA22 data Q’

within errors even the running
of o(QCD) is seen from BEC



Phases of QCD Matter

Quark Gluon Plasma
“Ionize” nudeons with heat
“‘Compress” them with density
New state(s?) of mattg:

&

Z. Fodor and S.D. Katz:

T. =164 + 2 -> 190 MeV (QM'05)
even at finite baryon density,
Cross over like transition.
(hep-lat/0106002, hep-lat/0402006)
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At the critical endpoint of the 1st
order phase transition, the

QCD phase transition is

of second order.



Critical phenomena and Lévy Sources

At the critical point, in a second order phase transition

P(R) ~R-21

where n is the exponent of the correlation function

For Lévy stable sources,

PR)~RE™,

where a is the Lévy index of stability



Critical phenomena and Lévy Sources

as the universality class of QCD

is that of the 3d Ising model,
(Stephanov-Rajagopal-Shuryak, hep-ph/9806219)

d=3 and the femtoscopy measurable a
Levy index of stability | | | | |
for 2" order QCD transitions
near the critical end point is:

o(Lévy) =N(3d Ising) ~ 0.50 + 0.05 |
Rieger, Phys. Rev. B 52, 6690 (1995) \

(T-T AT




Femptoscopy signals of various QGPs

strong 1st order
2nd order
cross-over

supercooled QGP (scQGP)

Strong 1st order QCD phase transition

(Pratt, Bertsch, Rischke, Gyulassy) Rout >> Rside
2nd order QGP -> hadron (Critical End Point)

(T. Gs, S. Hegyi, T. Novak, W.A. Zajc) a(Lévy) decreases to 0.5

near to critical sqrt(sNN)
cross-over QGP -> hadrons (Lattice QCD, Buda-Lund)
hadrons appear from a region of T, > T_

supercooledQGP:a) hadron flash Rout~Rside~Rlong b) no cross-section effects

C) strangeness enhancement d) no @-mass shift

scQGP = supercooled QGP predicted in (1994) is
not inconsistent with Au+Au data@RHIC in 2005



Summary and outiook

check the existence of the Lévy exponent in collisions
in p+p, d+Au and Au+Au @ RHIC,

Insert an extra parameter : Index of stability
when Gaussians start to fail
when Gaussians works seemingly well

relate a to the properties of QCD in p+p reactions:
Levy index of stability <-> anomalous dimension of QCD

Prediction: running of a(BEC) as given by the well-known o(QCD)

Interpretation in soft Au+Au: different domain,
for far from second order phase transition,

thermal source: o=2

But near to the critical end point: related to
critical correlation exponents of 3d Ising model:

for a 2™ order QCD phase transition at the critical end point a[105.
A big change in the SHAPE of the correlation function at the critical s "/~ .



R. Tagore: Playthings

Child, how happy you are sitting in the dust,
playing with a broken twig all the morning.
I smile at your play
with that little bit of a broken twig.
I am busy with my accounts,
adding up figures by the hour.
Perhaps you glance at me and think,
"What a stupid game to spail your morning with!"
Child, I have forgotten
the art of being absorbed in sticks and mud-pies.
I seek out costly playthings,
and gather lumps of gold and silver.
With whatever you find you create your glad games,
I spend both my time and my strength over things I never can obtain.
In my frail canoe I struggle to cross the sea of desire,
and forget that I too am playing a game.



