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Astronomy

Intensity/phase interferometry first used to assess sizes of
astronomical objects. Astronomers have since moved to details:

red giant Betelguese

Can we do comparably well?

binary star Capella, Monnier
Rep Prog Phy 66(03)789
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Imaging
Geometric information from imaging. General task:

C(q) =

∫
dr K (q, r) S(r)

From data w/ errors, C(q), determine the source S(r).
Requires inversion of the kernel K .
Optical recognition: K - blurring function, max entropy method

C:

S:
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Factorization of Final-State Amplitude in Reactions
2-ptcle inclusive cross section
at low |p1 − p2|

dσ

dp1 dp2
=

∫
dr S′

P(r) |Φ(−)
p1−p2

(r)|2

data source 2-ptcle wf

S′: distribution of emission
points in 2-ptcle CM

Normalizing with 1-ptcle cross sections yields correlation f:

C(p1 − p2) =

1
σ

dσ
dp1 dp2

1
σ

dσ
dp1

1
σ

dσ
dp2

=

∫
dr SP(r) |Φ(−)

p1−p2
(r)|2

Then the relative source is normalized to unity:
∫

dr SP(r) = 1.
Note: C may only give access to the density of relative emission
points in 2-ptcle CM, integrated there over time
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Expectations Regarding the Source

Instantaneous volume surface freeze-out.

Prolonged
emission from
source moving
in pair cm.

Resonance emission from a
source stationary in pair frame.

Any determination of source char-
acteristics from data, unaided by
reaction theory, is an imaging.
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Integral Relation
Of interest is the deviation of correlation function from unity:

R(q) = C(q)−1 =

∫
dr

(
|Φ(−)

q (r)|2 − 1
)

S(r) ≡
∫

dr K (q, r) S(r)

Learning on S possible when |Φ(−)
q (r)|2 deviates from 1, either

due to symmetrization or interaction within the pair.

The spin-averaged kernel K depends only on the relative angle
between q and r. This facilitates the angular decomposition.
With

K (q, r) =
∑

`

(2` + 1) K`(q, r) P`(cos θ) , and

R(q) =
√

4π
∑
`m

R`m(q) Y`m(q̂) , S(r) =
√

4π
∑
`m

S`m(q) Y`m(r̂)

we reduce the 3D relation to a set of 1D relations:

R`m(q) = 4π

∫
dr r2 K`(q, r) S`m(r)

Source Imaging P. Danielewicz



Introduction Correlation Analysis PHENIX π − π Data Final Points

Integral Relation
Of interest is the deviation of correlation function from unity:

R(q) = C(q)−1 =

∫
dr

(
|Φ(−)

q (r)|2 − 1
)

S(r) ≡
∫

dr K (q, r) S(r)

Learning on S possible when |Φ(−)
q (r)|2 deviates from 1, either

due to symmetrization or interaction within the pair.

The spin-averaged kernel K depends only on the relative angle
between q and r. This facilitates the angular decomposition.
With

K (q, r) =
∑

`

(2` + 1) K`(q, r) P`(cos θ) , and

R(q) =
√

4π
∑
`m

R`m(q) Y`m(q̂) , S(r) =
√

4π
∑
`m

S`m(q) Y`m(r̂)

we reduce the 3D relation to a set of 1D relations:

R`m(q) = 4π

∫
dr r2 K`(q, r) S`m(r)

Source Imaging P. Danielewicz



Introduction Correlation Analysis PHENIX π − π Data Final Points

` = 0 & Pure Interference
Different multipolarities of deformation for the source and
correlation functions are directly related to each other.
The ` = 0 version:

R0(q) = 4π

∫
dr r2 K0(q, r) S0(r)

where R0(q), K0 and S0(r) – angle-averaged correlation,
kernel and source, respectively.

For pure interference, π0’s or γ’s, Φ
(−)
q (r) = 1√

2

(
eiq·r + e−iq·r),

the kernel K = |Φ|2 − 1 results from the interference term in
|Φ|2 and the correlation-source relation is just the FT:

R(q) =

∫
dr cos (2qr) S(r) ⇒ S(r) =

1
π3

∫
dq cos (2qr)RP(q)

` = 0 still an FT: R0(q) =
2π

q

∫
dr r sin (2qr)S0(r)
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Fourier-Transform of Correlation

Coulomb-corrected 1D π−-π−

correlation-function
(Miskowiec et al.)

restored source: relative dstr of
π−-π− emission pts in central
Au+Au at 10.8 GeV/c (E877)
Brown, PD PLB398(97)252

S(r → 0): entropy, freeze-out density (Brown, PD, Panitkin . . . )
S(0)↘ ⇔ entropy ↗
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Discretization & Algebraic Inversion
Source discretization w/ χ2 fitting applies to any pair/multipolarity:

1 Discretize integral
Ri =

∑
j

4π ∆r r2
j K0(qi , rj) S(rj) ≡

∑
j

Kij Sj

2 Vary S(rj) to minimize χ2:

χ2 =
∑

i

(
∑

j Kij Sj −Rexp
i )2

σ2
i

3 Sj -derivative of χ2 yields:∑
ij

1
σ2

i
(Kij Sj −Rexp

i ) Kij = 0

with solution in a mtx form:
S = (K>K )−1 K>Rexp

����

��
��
��
��

��
��
��
��

����

... r

S(r)

r1 r2 r3 r4

S1
S2

S3

S4

→ Bins adjusted to ensure inversion stability; a smoother basis.
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Understanding of Angle-Averaged pp Correlations
Imaging shook up the interpretation of Cpp
Verde PRC65(02)054609

Gauss par: quickly changing radii. Imaging: quickly changing
preequilibrium fraction, non-Gaussian source shapes!
Preequilibrium fraction:

∫ r<R dr S ≡ λ
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Imaged pp Source Compared to Transport

Verde PRC67(03)034606: Ar+Sc central collisions at 80 MeV/u,
fast 400 < Ptot < 800 MeV/c pairs

Nucleon-based transport
reproduces correctly the
shape of the preequilibrium
source.

The transport cannot
describe correctly the
preequilibrium pair fraction.
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Why Anisotropies: E.g. Time Difference in Emission

Anisotropic C, depen-
dent on orientation of q
Attributable to
anisotropic S:

Ghetti et al.,
PRL91(03)092701

Model fitted to data
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Systematic Treatment of Anisotropies??

As far as anisotropies are concerned, with

R(q) =
√

4π
∑
`m

R`m(q) Y`m(q̂) , S(r) =
√

4π
∑
`m

S`m(q) Y`m(r̂)

we have

R`m(q) = 4π

∫
dr r2 K`(q, r) S`m(r)

A set of 1D integral relations

Problem: Why turning real quantities, R & S, into imaginary,
R`m & S`m, of doubtful nature? Other basis than Y`m??
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Cartesian Basis

Take the direction vector: n̂α = (sin θ cos φ, sin θ sin φ, cos θ)

Rank-` tensor product:

(n̂`)α1...α`
≡ n̂α1 n̂α1 . . . n̂α`

=
∑

`′≤`,m

c`′m Y`′m

D(`,`) projection operator that, within the space of rank-`
cartesian tensors, removes Y`′m components with `′ < `:

(Dn̂`)α1...α`
=

∑
m

c`m Y`m

The components Dn̂` are real and can be used to replace Y`m.
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Low-` Cartesian Harmonics
Dn̂0 = 1

(Dn̂1)α = n̂α

(Dn̂2)α1 α2 = n̂α1 n̂α2 −
1
3
δα1 α2

(Dn̂3)α1 α2 α3 = n̂α1 n̂α2 n̂α3 −
1
5
(δα1 α2 n̂α3 + δα1 α3 n̂α2 + δα2 α3 n̂α1)

(Dn̂4)α1 α2 α3 α4 = n̂α1 n̂α2 n̂α3 n̂α4 −
1
7
(δα1 α2 n̂α3 n̂α4 + . . .)

+
1

35
(δα1 α2 δα3 α4 + . . .)

...

D can be called a detracing operator as∑
α

(Dn̂`)α α α3...α`
= 0
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Decomposition with Cartesian Harmonics

Completeness relation (D = D> = D2):

δ(Ω′ − Ω) =
1

4π

∑
`

(2` + 1)!!

`!

∑
α1...α`

(Dn̂′
`
)α1...α`

(Dn̂`)α1...α`

=
1

4π

∑
`

(2` + 1)!!

`!

∑
α1...α`

(Dn̂′
`
)α1...α`

n̂α1 . . . n̂α`

In consequence

R(q) =

∫
dΩ′ δ(Ω′ − Ω)R(q′) =

∑
`

∑
α1...α`

R(`)
α1...α`

(q) q̂α1 . . . q̂α`

where coefficients are angular moments

R(`)
α1...α`

(q) =
(2` + 1)!!

`!

∫
dΩq

4π
R(q) (Dq̂`)α1...α`
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Consequences

Cartesian coefficients for R & S directly related to each other:

R(`)
α1···α`

(q) = 4π

∫
dr r2 K`(q, r)S(`)

α1···α`
(r)

For weak anisotropies, only lowest-` matter:

R(q) = R(0)(q) +
∑
α

R(1)
α (q) q̂α +

∑
α1 α2

R(2)
α1α2

(q) q̂α1 q̂α2 + . . .

R(0) - angle-averaged correlation

R(1)
α ≡ R(1) e(1)

α - dipole distortion, magnitude + direction vector

R(2)
αβ (q) = R(2)

1 e(2)
1α e(2)

1β + R(2)
3 e(2)

3α e(2)
3β −

(
R(2)

1 + R(2)
3

)
e(2)

2α e(2)
2β

- quadrupole distortion, 2 magnitude values + 3 orthogonal
direction vectors
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Source & Correlation Symmetries

π− − π− or π+ − π+:

Identical ptcles: ~r → −~r ⇔ even-` only
Midrapidity: z → −z ⇔ even-z moments only
Reaction-plane averaging: y → −y ⇔ even-y moments
only
In the end, also: x → −x ⇔ even-x moments only

` = 0
` = 2: x2, y2, z2 (only 2 independent)
` = 4: x4, y4, z4, x2 y2, x2 z2, y2 z2 (only 3 independent)
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` = 0 Angle-Averaged Correlation

Analysis in the pair CM.

Paul Chung

different order of averaging. . .

Coulomb final-state interac-
tions treated as an essential
tool, not a nuisance!
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` = 2 & ` = 4 Correlations

C2
x2 + C2

y2 + C2
z2 = 0 Only independent ` = 4

functions shown

Note: C in the x-direction is C = C0 + C2
x2 + C4

x4 + . . ., etc.

Full 3D info in terms of few 1D plots!
Source Imaging P. Danielewicz
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Imaged Source Moments

Run4 EMC+TOF π+π+ Au+Au √s=200GeV

r (fm)

S
ou

rc
e 

M
om

en
t (

x 
10

-5
 fm

-3
)

S0(r)

S2
 xx (r)

S0(r) + S2
 xx (r)

0<cen<30 %
0.20<kT<0.36 GeV/c

0

2

4

-1

0

1

0

2

4

0 5 10 15 20 25 30 35 40

Moments contributing to x-
direction

Source enhancement in x-
direction compared to av-
erage.

At low r poor resolution for
high `.

Here, same source basis
used for different ` - opti-
mally should be different.
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Imaged Source Along Different Directions

S = S0 +S2
x2 +S4

x4 + . . .
` = 0 2 4

Imaged source dramat-
ically extended in the
outward direction in the
pair CM, indicating a
prolonged emission in
that frame!

Rout = 15.5 fm
Rside = 4.2 fm
Rlong = 4.7 fm
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Final Points
Correlations at low relative velocities yield access to
source spatial characteristics in the pair CM! Temporal
information in the pair CM is not accessible.
Coulomb final-state interactions should be employed for
source-determination and not be patched up.
Source shape imaging is feasible: PD & Pratt,
PLB618(05)60, D. Brown et al., nucl-th/0507015.
Identical pion data (Paul Chung) demonstrate dramatically
prolonged pion emission in the pair CM.
How to interpret the prolonged emission?? Instantaneous
freeze-out in the LCM violates causality. Lorentz effects
clearly important. Hydro models need to make
assumptions about the freeze-out surface. . .
The focus should be the accessible, i.e. pair -CM info, and
not an info patched-up with auxiliary considerations.
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