HBT Results from UA1 (and some comparisons)

HC Eggers B Buschbeck FJ October University of Stellenbosch Inst for High Energy Physics, Vienna Inst for Maritime Technology, Simonstown

UA1: relic of the past; peek into the future?

- Hadronic physics as baseline for AA physics
- 630 GeV hadronic collisions:
 - energy dependence of everything
 - transverse jets AND longitudinal expansion
 - are the same models still valid? "New" or "different" physics?
- OUTLINE OF TALK:
 - cuts, corrections, normalisation issues
 - q0-q3
 - qlong-qtransverse: (slow cooking)
 - qout-qside-qlong (fast food)
- BOTTOM LINE: Current fits problematic due to strong peak. Discrepancy remains unexplained.

Cuts and characteristics

- $p \overline{p}$ at $\sqrt{s} = 630$ GeV
- 2.45 million minimum-bias events
- Like-sign pions, some K contamination (no PID!)
- CUTS:
 - Single-particle: |y| < 3 $p_t > 0.15$ $-45^{\circ} \le \phi \le 45^{\circ}$, $135^{\circ} \le \phi \le 225^{\circ}$
 - Pair cuts:
 - $Q^2 = -(p_1 p_2)^2 > 0.0003$ GeV² $\langle n_{ch} \rangle = 8.0$ after all cuts
 - Angle cuts ("alpha cut")
 - Ghost cut
- Corrections for Coulomb and ghost-cut overkill

Ghosts (split tracks) and merged tracks

possible double counting two overlapping real tracks of the same track (ghosts) may be counted as one EVENT 1279.

Correction factor for ghost cut overkill

Correct for removal of real LS pairs by the ghost cut by running US pairs through the same routines for a correction factor

Eggers WPCF05

Eggers WPCF05

Construction of reference sample

We use a sum over fixed-multiplicity subsamples:

$$R_{2}(\boldsymbol{q},\boldsymbol{K}) = \frac{\sum_{N} P_{N} \rho_{2}^{sib}(\boldsymbol{q},\boldsymbol{K};N)}{\sum_{N} P_{N} \rho_{2}^{ref}(\boldsymbol{q},\boldsymbol{K};N)}$$

where

$$\rho_2^{ref}(x_{1,}x_2;N) = \rho_2^{multinomial}(x_{1,}x_2;N)$$

is the second moment of the multinomial distribution

$$\rho_2^{multinomial}(x_1, x_2; N) = \frac{N-1}{N} \rho_1(x_1; N) \rho_1(x_2; N)$$

rather than the Poisson reference

$$\rho_2^{Poisson}(x_{1,}x_2) = \rho_1(x_1) \rho_1(x_2)$$

event-mixing using same-N track pool

In hadronic collisions, inclusion of the (N-1)/N factor is important!

Eggers WPCF05

Eggers WPCF05

Simple parametrisations for
$$R_2(ql,qt)$$
Generic structure: $R_2 = \gamma \left[1 + \left| S_{12} \right|^2 \right]$ Simple Gauss $\left| S_{12} \right|^2 = \lambda \exp \left[-R_L^2 q_L^2 - R_T^2 q_T^2 \right]$ Gauss with cross-term $\left| S_{12} \right|^2 = \lambda \exp \left[-R_L^2 q_L^2 - R_T^2 q_T^2 - 2R_{LT}^2 q_L q_T \right]$ Exponential $\left| S_{12} \right|^2 = \lambda \exp \left[-R_L q_L - R_T q_T \right]$ Exponential w cross-term $\left| S_{12} \right|^2 = \lambda \exp \left[-R_L q_L - R_T q_T - 2R_{LT} \sqrt{q_L q_T} \right]$ Power-law $\left| S_{12} \right|^2 = \left(R_L q_L \right)^{-\alpha_L} \left(R_T q_T \right)^{-\alpha_T}$

Simple fits of R2(ql,qt): peak heights and shapes

Simple fits of R2(ql,qt)

fixed-ql slices

fixed-qt slices

R2(ql,qt) by NA22

ZPC 71,405 (1996)

Edgeworth and Levy-stable parametrisations $R_{2} = \gamma \left| 1 + \left| S_{12} \right|^{2} \right|$ Generic structure: must be symmetric $|S_{12}|^{2} = \lambda \exp\left(-\sum_{i} R_{i}^{2} q_{i}^{2}\right) \prod_{i} \left(1 + \frac{\kappa_{4i}}{24} H_{4}(x_{i})\right)$ Edgeworth $x_i = \sqrt{2} R_i q_i$ i = L, T

Levy-stable

$$|S_{12}^{2}| = \lambda \exp\left[-\left(R_{L}^{2}q_{L}^{2} + R_{T}^{2}q_{T}^{2}\right)^{\alpha/2}\right]$$

Back to UA1: Edgeworth and power-law fits of R2(ql,qt)

Levy for R2(ql,qt): unstable fits

8 out of 18 initial parameter value sets converged:

Gamma	Lambda	Alpha	Rlong	Rtrans	CHISQ
0.9731	50.97	0.2298	1760	1222	3.10
0.9721	56.69	0.2242	2290	1590	3.10
0.9721	56.23	0.2246	2244	1558	3.10
0.9700	71.54	0.2130	4113	2857	3.10
0.9716	60.06	0.2214	2641	1835	3.10
0.9728	52.02	0.2287	1852	1286	3.10
0.9714	60.99	0.2206	2748	1908	3.10
0.9733	49.39	0.2314	1629	1131	3.10

AFTER LEAVING OUT A SECOND POINT:

11 out of 18 initial parameter value sets converged:

Gamma	Lambda	Alpha	Rlong	Rtrans	CHISQ
1.9700	48.90	0.2272	1833	1258	2.78
0.9711	43.79	0.2332	1392	955	2.78
3.8255	-0.75	-1.0977	-10	-7	2.78
0.9710	44.32	0.2325	1435	985	2.78
0.9628	109.20	0.1909	14964	10275	2.78
2.8633	-0.67	-1.2269	-6	4	2.78
0.9724	38.81	0.2401	1036	711	2.78
0.9705	46.40	0.2300	1609	1104	2.78
0.9713	43.09	0.2341	1337	918	2.78
0.9717	41.31	0.2364	1208	829	2.78
0.9701	48.52	0.2276	1795	1232	2.78

Levy for $R_2(q_1,q_T)$: representative plots

Levy in (ql,qt): representative plots

Eggers WPCF05

Alternative approach: **impose** two scales

Given the strong peak, we simply impose two scales in the form of a double Gaussian:

$$R_{2}(q_{L},q_{T})=\gamma\left[1+\lambda_{H}\exp\left(-R_{LH}^{2}q_{L}^{2}-R_{TH}^{2}q_{T}^{2}\right)+\lambda_{C}\exp\left(-R_{LC}^{2}q_{L}^{2}-R_{TC}^{2}q_{T}^{2}\right)\right]$$

"HALO"
"HALO"
"Event of the second state of the seco

Two scale fits: dependence on cut

Two-scale fits: slices

8x8 cut 2/NDF = 2.28

The sharp peak is confined to the first 100 MeV in 3D also.

R₂(qo, qs, ql): simple fits again don't work

3D Edgeworth and Levy-stable distributions For Bertsch-Pratt, try:

Edgeworth expansion for symmetric distributions:

$$R_{2}(\boldsymbol{q}) = \boldsymbol{\gamma} \left[1 + \lambda \exp\left(-\sum_{i} R_{i}^{2} q_{i}^{2}\right) \prod_{i} \left(1 + \frac{\kappa_{4i}}{24} H_{4}(x_{i})\right) \right]$$
$$x_{i} = \sqrt{2} R_{i} q_{i} \quad i = o, s, l$$

Levy distribution with single exponent:

$$R_{2}(\boldsymbol{q}) = \gamma \left[1 + \lambda \exp \left(- \left(R_{o}^{2} q_{o}^{2} + R_{s}^{2} q_{s}^{2} + R_{l}^{2} q_{l}^{2} \right)^{\alpha/2} \right) \right]$$

Result: Again, fits look OK but there is substantial parameter redundancy: no single set of best-fit values.

Edgeworth and Levy: representative plots on the axes

Eggers WPCF05

Edgeworth and Levy: representative plots on the diagonals

UA1 higher-order HBT (hep-ph/9702235)

Eggers WPCF05

Summary

- Normalisation and correction issues very important
- qlong-qtransverse:
 - Simple Fits Fail (including power-law, cross-term gauss)
 - Levy OK but unstable
 - Two-component model yields "spherical halo" of approx 2.5fm and "prolate core" of 0.5-0.8fm
- 3D Bertsch-Pratt:
 - more of the same
 - even two-scale model fails (so far)
- Hadronic physics may differ from current AA-based approaches
- Higher-order correlations
- OUTLOOK: Lots of things to do (Kt, y, Coulomb, shape, jets ...)
 BUT we must first understand the low-q peak
- Preservation of data (please!)

Unnormalised moments for ql-qt

Effect of Coulomb correction, (ql-qt) data

Ignore bin with smallest (ql,qt) from now on.

with Coulomb

Nevertheless, note large intercept!

Eggers WPCF05

Edgeworth and power-law fits of R2(ql,qt) fixed-ql slices fixed-qt slices

NO COULOMB: R2(ql,qt)

NO COULOMB R2(ql,qt)

fixed-ql slices

fixed-qt slices

Levy: fits with fixed

 $\alpha = 0.50$ $\alpha = 0.70$ $\alpha = 1.30$

 $R_{2}(qo,qs,ql)$ by L3

Projections of 240MeV slices onto the axes (left) (ql,qs) surface (below)

Eggers WPCF05

