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Equations of Motion
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@ Energy-Momentum Conservation:

0, T" =0, where TH = (e+ p)u'u” — pg";

@ Baryon-Number Conservation:

9, (ngu) = 0;

@ Other Quantum-Number Conservation (ng, ngp, . . .):

8ﬂ(nsuu) = 0 9
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Equations of Motion
SPheRIO code

We solve these equations with

SPheRIO
(Smoothed Particle hydrodynamic evolution of Relativistic
heavy IOn collisions) code,

based on SPH (Smoothed-Particle Hydrodynamics) algorithm.
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@ EoS with 1st.-Order Phase Transition (10PT Eo0S):
e QGP phase: MIT Bag Model

Y. Hama, R. Andrade, F. Grassi, O. Socolowski, T. Kodama, B. Tax  Latt'‘QCD EoS, IC Fluctuations and Continuous Emission



The Basic Ingredients of Hydrodynamic Models Equations of Motion - SPheRIO Code
Equations of State
Initial Conditions
Decoupling Procedure

Equations of State

@ EoS with 1st.-Order Phase Transition (10PT Eo0S):

e QGP phase: MIT Bag Model
e Hadron phase: Resonance gas, with excluded-volume

Y. Hama, R. Andrade, F. Grassi, O. Socolowski, T. Kodama, B. Tax  Latt'‘QCD EoS, IC Fluctuations and Continuous Emission



The Basic Ingredients of Hydrodynamic Models Equations of Motion - SPheRIO Code
Equations of State
Initial Conditions
Decoupling Procedure

Equations of State

@ EoS with 1st.-Order Phase Transition (10PT Eo0S):

e QGP phase: MIT Bag Model
e Hadron phase: Resonance gas, with excluded-volume

Y. Hama, R. Andrade, F. Grassi, O. Socolowski, T. Kodama, B. Tax  Latt'‘QCD EoS, IC Fluctuations and Continuous Emission



The Basic Ingredients of Hydrodynamic Models Equations of Motion - SPheRIO Code
Equations of State
Initial Conditions
Decoupling Procedure

Equations of State

@ EoS with 1st.-Order Phase Transition (10PT Eo0S):

e QGP phase: MIT Bag Model
e Hadron phase: Resonance gas, with excluded-volume

@ Lattice QCD Results:
o Critical End Point in the Phase Diagram

Y. Hama, R. Andrade, F. Grassi, O. Socolowski, T. Kodama, B. Tav  Latt'‘QCD EoS, IC Fluctuations and Continuous Emission



The Basic Ingredients of Hydrodynamic Models Equations of Motion - SPheRIO Code
Equations of State
Initial Conditions
Decoupling Procedure

Equations of State

@ EoS with 1st.-Order Phase Transition (10PT Eo0S):

e QGP phase: MIT Bag Model
e Hadron phase: Resonance gas, with excluded-volume

@ Lattice QCD Results:
o Critical End Point in the Phase Diagram

@ Phenomenological Parametrization of Lattice QCD EoS:
We call this parametrization CP EoS.

Y. Hama, R. Andrade, F. Grassi, O. Socolowski, T. Kodama, B. Tax  Latt'‘QCD EoS, IC Fluctuations and Continuous Emission



The Basic Ingredients of Hydrodynamic Models Equations of Motion - SPheRIO Code
Equations of State
Initial Conditions
Decoupling Procedure

Equations of State

@ EoS with 1st.-Order Phase Transition (10PT Eo0S):

e QGP phase: MIT Bag Model
e Hadron phase: Resonance gas, with excluded-volume

@ Lattice QCD Results:
o Critical End Point in the Phase Diagram

@ Phenomenological Parametrization of Lattice QCD EoS:
We call this parametrization CP EoS.

@ Comparisons of CP EoS with 1OPT EoS.
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Parametrization of Lattice QCD EoS

In 1OPT EoS:
P

P is given by
(P~ Fo) (P~ Py) =0.
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Parametrization of Lattice QCD EoS

In 1OPT EoS: In CP EoS:
P P
PO
P,
T
P is given by given p, we parametrize P as
(P—FPo)(P—Py)=0. (P—FPo)(P—Py)=0(pn),

with &(41) = do exp [—(11/pc)?]-
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Parametrization of Lattice QCD EoS

Then,

26
V/(Pg — Pr)? + 46

P = APy+(1-=XNPg+

s = Asy+(1—-2X)sqg

2(u/p3)d
V/(Pq — Pr)? + 46
2 [1+ (w/pe)?] 6
V/(Pq — Pr)? + 46

ng = )\nH+(1 —/\)nQ—

e = X+ (1—Negq—

where A = [1 — (Pg — Py)//(Pq — Pr)2 + 45} /2.
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Some Preliminary Conclusions

@ For the same initial conditions, expressed by some
e Energy-density distribution,
e Velocity distribution and
e Baryon-number distribution,
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Some Preliminary Conclusions

@ For the same initial conditions, expressed by some
e Energy-density distribution,
e Velocity distribution and
e Baryon-number distribution,
the multiplicity is larger for CP EoS, as compared with the
one for 1OPT EoS.

@ The acceleration is larger in the transition (crossover)
region for CP EoS.
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Initial Conditions (IC)

@ In usual hydrodynamic approach, one assumes some
highly symmetric and smooth IC.

@ However, our systems are small, so are
expected in real collisions.
@ Many simulators, based on microscopic models, e.g.
o HIJING,
e VNI,
o URASIMA,
@ NeXusS,
o -

show such event-by-event fluctuations.
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Initial Conditions:

Event-by-Event Fluctuating vs. Smooth Averaged

Energy density for central Au+Au collisions at 130 GeV, given
by NeXus simulator,” at mid-rapidity

One random event Average over 30 events
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Decoupling Procedure

@ Often one assumes decoupling on a sharply defined
hypersurface. We call this Sudden Freeze Out (FO).
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Decoupling Procedure

@ Often one assumes decoupling on a sharply defined
hypersurface. We call this Sudden Freeze Out (FO).

@ However, our systems are small, so partcles may escape
from a layer with thickness

@ We introduce, at each space-time point x*, a certain
momentum-dependent

P(x, k) = exp {— /TOO p(x')ov d7'/:| :

This is the Continuous Emission Model (CE).
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Decoupling Procedure

In order to make the computation practicable,

@ we take P on the average, i.e., P(x, k) — (P(x, k)) = P(x)
and

@ we approximate linearly the density p(x’) = a s(x’).
Thus,

2
P(x,k) — P(x) =exp (—n \dsjdﬂ) ,

where k = 0.5a (ov) is estimated to be 0.3, corresponding to
(ov) ~ 2 fm2.
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Sudden Freezeout vs. Continuous Emission

Central Au+Au collisions at 130 AGeV

FO
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Sudden Freezeout vs. Continuous Emission

Central Au+Au collisions at 130 AGeV

FO CE

Temperature (GeV) Probability
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Pseudorapidity Distribution
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Pseudorapidity Distribution
Transverse-Momentum Distribution
Elliptic-Flow Parameter v,

HBT Radii

@ The use of the averaged
initial conditions (<IC>)
gives
compared to
event-by-event ( )
ones.

As far as 7 distribution is
concerned, the difference
betwen the continuous
emission (CE) and the
sudden freezeout (FO) is
small.

as
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@ The pr distribution
given by CP EoS
, as
compared with the one
predicted by 1OPT oS.
However, the differece
is small.
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@ The averaged initial
conditions (<IC>) give
as
compared to the event-
by-event ( ) ones. In
the latter, the expansion
is

@ The difference betwen
the continuous emission
(CE) and the sudden
freezeout (FO) is small.
However, the interpret-
ations are different.
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Our Results Transverse-Momentum Distribution
Elliptic-Flow Parameter v,
HBT Radii

HBT Radii

R. (Event by Event)

o EsEEos — @ Practically, there is no
18PTESS(ERE D) . | difference between the
wom results of CP EoS and

1 10PT EoS.

. @ The data are well

. reproduced.

- @ The difference between
R — Sudden Freezeout (FO)

kr (GeV) and the Continuous
Data: Emission (CE) is small.

R (fm)
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@ kTt dependence
predicted by CP EoS is
steeper than the one
given by 10OPT EoS.

@ Quantitatively, the data
are poorely reproduced.
@ But, k7 dependence is

best reproduced by CP
EoS and with CE.
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Summary

Summary

@ The for CP EoS in the
mid-rapidity.

@ The pr distribution becomes . However, the differece
is small.

° . Continuous Emission makes the 7 distribution
narrower.

@ HBT radii to data.

@ Outlook

e The effect of the emission on the interacting component has
not been taken into account. Probably it makes R, smaller.
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Apendix

Centrality Dependence of v, (pions; Pb+Pb; 17.3A GeV)
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Apendix

Rapidity Distributions (Pb+Pb, 17.3A GeV)
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Transverse-Mass Distributions (Pb+Pb, 17.3A GeV)
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