Bose-Einstein Correlations in e^+e^- Annihilation (and $e^+e^- \rightarrow W^+W^-$)

W. J. Metzger Radboud University Nijmegen

4thWorkshop on Particle Correlations and Femtoscopy on Particle Correlations and Femtoscopy

Kroměříž, Czech Republic

16 August 2005

Introduction — Correlations

 $\rho_q(p_1, \dots, p_q) = \frac{1}{\sigma_{\text{tot}}} \frac{\mathrm{d}^q \sigma_q(p_1, \dots, p_q)}{\mathrm{d}p_1 \dots \mathrm{d}p_q}$

$$\int \rho_1(p) \, \mathrm{d}p = \langle n \rangle$$

$$\int \rho_2(p_1, p_2) \, \mathrm{d}p_1 \, \mathrm{d}p_2 = \langle n(n-1) \rangle$$

$$\rho_{1}(p_{1}) = C_{1}(p_{1})$$

$$\rho_{2}(p_{1}, p_{2}) = C_{1}(p_{1})C_{1}(p_{2}) + C_{2}(p_{1}, p_{2})$$

$$\rho_{3}(p_{1}, p_{2}, p_{3})) = C_{1}(p_{1})C_{1}(p_{2})C_{1}(p_{3})$$

$$+ \sum_{3 \text{ perms}} C_{1}(p_{1})C_{2}(p_{2}, p_{3})$$

$$+ C_{3}(p_{1}, p_{2}, p_{3})$$

$$C_{2} = \rho_{2}(p_{1}, p_{2}) - C_{1}(p_{1})C_{1}(p_{2})$$

$$R_{q} = \frac{\rho_{q}}{\prod_{i=1}^{q} \rho_{1}(p_{i})} \qquad \qquad K_{q} = \frac{C_{q}}{\prod_{i=1}^{q} \rho_{1}(p_{i})}$$

$$R_2 = 1 + \frac{C_2}{\rho_1(p_1)\rho_1(p_2)} = 1 + K_2$$

q-particle density where σ_q is inclusive cross section Normalization:

In terms of 'factorial cumulants', C

"trivial" 3-particle correlations "genuine" 3-particle correlations 2-particle correlations

Convenient to normalize

Introduction — **BEC**

To study BEC, not other correlations, replace $\prod_{i=1}^{q} \rho_1(p_i)$ by $\rho_0(p_1, ..., p_q)$, the *q*-particle density if no BEC (reference sample)

e.g., 2-particle BEC are studied in terms of

$$R_2(p_1, p_2) = \frac{\rho(p_1, p_2)}{\rho_0(p_1, p_2)}$$

Since 2- π BEC only at small $Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{M_{12}^2 - 4m_{\pi}^2}$, integrate over other variables

$$R_2(Q) = \frac{\rho(Q)}{\rho_0(Q)}$$

Assuming incoherent particle production and spatial source density S(x),

$$R_2(Q) = 1 + |G(Q)|^2$$

where $G(Q) = \int dx \, e^{iQx} S(x)$ is the Fourier transform of S(x)Assuming S(x) is a Gaussian with radius r \implies $R_2(Q) = 1 + e^{-Q^2 r^2}$

 $R_2(Q) \propto 1 + oldsymbol{\lambda} e^{-Q^2 oldsymbol{r}^2}$

Assumes

- incoherent average over source λ tries to account for
 - partial coherence
 - multiple (distinguishable) sources, long-lived resonances
 - pion purity
- spherical (radius r) Gaussian density of particle emitters seems unlikely in e⁺e⁻ annihilation — jets
- static source, *i.e.*, no *t*-dependence certainly wrong

Nevertheless, this Gaussian formula is the most often used parametrization And it works fairly well But what do the values of λ and ractually mean?

When Gaussian parametrization does not fit well, can expand about the Gaussian (Edgeworth expansion). Keeping only the lowest-order non-Gaussian term, $\exp(-Q^2r^2)$ becomes $\exp(-Q^2r^2) \cdot \left[1 + \frac{\kappa}{3!}H_3(Qr)\right]$

 $(H_3 \text{ is third-order Hermite polynomial})$

Experimental Problems I

I. Pion purity

- 1. mis-identified pions K, p
 - correct by MC. But is it correct?
- 2. resonances
 - long-lived affect λ BEC peak narrower than resolution
 - short-lived, e.g., ρ , affect r
 - correct by MC. But is it correct?
- 3. weak decays
 - $\sim 20\%$ of Z decays are $b\bar{b}$ like long-lived resonances, decrease λ

 per Ζ: 17.0 π[±], 2.3 K[±], 1.0 p (15% non-π)

Origin of π^+ in Z decay	(%)
	(JETSET 7.4)
direct (string fragmentation)	16
$\begin{array}{ l l l l l l l l l l l l l l l l l l l$	62
decay (long-lived resonances) $\Gamma < 6.7{\rm MeV}, \tau > 30{\rm fm}$	22

Experimental Problems II

II. Reference Sample, ρ_0

— it does NOT exist

Common choices:

- 1. +, pairs
 But different resonances than +, +
 correct by MC. But is it correct?
- 2. Monte Carlo But is it correct?
- Mixed events pair particles from different events But destroys all correlations, not just BEC

- correct by MC. - But is it correct?

4. Mixed hemispheres (for 2-jet events)

 pair particle with particle reflected from opposite hemisphere
 But destroys all correlations

- correct by MC. - But is it correct?

Experimental Problems III, IV

III. Final-State Interactions

- 1. Coulomb
 - form not certain
 - for R_2 , a few % in lowest Q bin
 - double if +, ref. sample
 - often neglected for $\ensuremath{R_2}$
 - but not negligible for $\ensuremath{R_3}$
- 2. Strong interaction $S = 0 \pi \pi$ phase shifts can be incorporated together with Coulomb into the formula for R_2

Osada, Sano, Biyajima, Z.Phys. C72(1996)285)

- tends to increase λ and decrease r

e.g., OPAL data:

 $\lambda_{\mathrm{noFSI}}=0.71$, $\lambda_{\mathrm{FSI}}=1.0$

$$r_{\rm noFSI} = 1.34$$
, $r_{\rm FSI} = 1.09 \, {\rm fm}$

- Not used by experimental groups

- correction for π purity increases λ - mixed ref. gives smaller λ , r than +- ref.

\sqrt{s} dependence of r

No evidence for \sqrt{s} dependence

Mass dependence of r — BEC and FDC

No evidence for $r \sim 1/\sqrt{m}$

r(mesons) > r(baryons)

Multiplicity/Jet dependence of λ , r

Multiplicity dependence is largely due to number of jets.

Elongation of the source

The usual parametrization assumes a symmetric Gaussian source But, there is no reason to expect this symmetry in $e^+e^- \rightarrow q\bar{q}$. Therefore, do a 3-dim. analysis in the Longitudinal Center of Mass System

the **LCMS**

Advantages of LCMS:

$$\begin{aligned} Q^2 &= Q_{\rm L}^2 + Q_{\rm side}^2 + Q_{\rm out}^2 - (\Delta E)^2 \\ &= Q_{\rm L}^2 + Q_{\rm side}^2 + Q_{\rm out}^2 \left(1 - \beta^2\right) \qquad \text{where } \beta \equiv \frac{p_{\rm out \, 1} + p_{\rm out \, 2}}{E_1 + E_2} \end{aligned}$$

Thus, the energy difference, and therefore the difference in emission time of the pions couples only to the out-component, Q_{out} .

Thus,

 $Q_{\rm L}$ and $Q_{\rm side}$ reflect only spatial dimensions of the source $Q_{\rm out}$ reflects a mixture of spatial and temporal dimensions.

Parametrization of R_2

Writing R_2 in terms of $\vec{Q} = (Q_L, Q_{side}, Q_{out})$: $R_2(\vec{Q}) = \frac{\rho(Q)}{\rho_0(\vec{Q})}$

We parametrize $R_2(\vec{Q})$ by a 3-dimensional Gaussian

$$R_2(Q_{\mathsf{L}}, Q_{\mathsf{out}}, Q_{\mathsf{side}}) = \gamma \cdot (1 + \lambda G) \cdot B$$

where

- $\gamma =$ normalization (≈ 1)
- $\lambda =$ "incoherence", or strength of BE effect
- G = azimuthally symmetric Gaussian:

 $G = \exp\left(-r_{\mathsf{L}}^2 Q_{\mathsf{L}}^2 - r_{\mathsf{out}}^2 Q_{\mathsf{out}}^2 - r_{\mathsf{side}}^2 Q_{\mathsf{side}}^2 + 2\rho_{\mathsf{L},\mathsf{out}} r_{\mathsf{L}} r_{\mathsf{out}} Q_{\mathsf{L}} Q_{\mathsf{out}}\right)$

• $B = (1 + \delta Q_{L} + \varepsilon Q_{out} + \xi Q_{side})$ describes large Q (long-range correlations)

Elongation Results (L3)

parameter	Gaussian	Edgeworth	
λ	$0.41\pm0.01^{+0.02}_{-0.19}$	$0.54 \pm 0.02^{+0.04}_{-0.26}$	
<u><i>r</i>∟</u> (fm)	$0.74\pm0.02^{+0.04}_{-0.03}$	$0.69\pm 0.02^{+0.04}_{-0.03}$	
$r_{\sf out}~({\sf fm})$	$0.53\pm0.02^{+0.05}_{-0.06}$	$0.44\pm0.02^{+0.05}_{-0.06}$	
$r_{\sf side}~({\sf fm})$	$0.59\pm0.01^{+0.03}_{-0.13}$	$0.56\pm0.02^{+0.03}_{-0.12}$	
$r_{ m out}/r_{ m L}$	$0.71\pm0.02^{+0.05}_{-0.08}$	$0.65\pm0.03^{+0.06}_{-0.09}$	
$r_{\sf side}/r_{\sf L}$	$0.80\pm0.02^{+0.03}_{-0.18}$	$0.81\pm0.02^{+0.03}_{-0.19}$	
κ_{L}	_	$0.5\pm0.1^{+0.1}_{-0.2}$	
κ_{out}	_	$0.8\pm0.1\pm0.3$	
$\kappa_{\sf side}$	_	$0.1\pm0.1\pm0.3$	
δ	$0.025 \pm 0.005^{+0.014}_{-0.015}$	$0.036 \pm 0.007^{+0.012}_{-0.023}$	
ϵ	$0.005\pm0.005^{+0.034}_{-0.012}$	$0.011 \pm 0.005 ^{+0.037}_{-0.012}$	
ξ	$-0.035\pm0.005^{+0.031}_{-0.024}$	$-0.022\pm0.006^{+0.020}_{-0.025}$	
$\chi^2/{\sf DoF}$	2314/2189	2220/2186	
C.L. (%)	3.1	30	

- $\rho_{\rm L,out} = 0$ So fix to 0.
- Edgeworth fit significantly better than Gaussian
- $r_{\rm side}/r_{\rm L} < 1$ more than 5 std. dev. Elongation along thrust axis
- Models which assume a spherical source are too simple.

W. J. Metzger — BEC in e^+e^- — WPCF, Kroměříž — 16 August 2005

Elongation Results					
			Gauss /	2-D	3-D
			Edgeworth	$r_{ m t}/r_{ m L}$	$r_{\sf side}/r_{\sf L}$
DELPHI	mixed	2-jet	Gauss	$0.62{\pm}0.02{\pm}0.05$	
ALEPH	mixed	2-jet	Gauss	$0.61{\pm}0.01{\pm}0.??$	—
	+-	2-jet	Gauss	$0.91{\pm}0.02{\pm}0.??$	—
	mixed	2-jet	Edgeworth	$0.68 {\pm} 0.01 {\pm} 0.??$	—
	+-	2-jet	Edgeworth	$0.84{\pm}0.02{\pm}0.??$	—
OPAL	+-	2-jet	Gauss		$0.82{\pm}0.02{\pm}^{0.01}_{0.05}$
L 3	mixed	all	Gauss	—	$0.80{\pm}0.02{\pm}^{0.03}_{0.18}$
	mixed	all	Edgeworth		$0.81{\pm}0.02{\pm}^{0.03}_{0.19}$
1.4					

 $\sim 20\%$ elongation along thrust axis (ZEUS finds similar results in ep)

3π BEC

Assuming static source density f(x) in space-time, with Fourier transform $G(Q) = \int dx \, e^{iQx} f(x) = G e^{i\phi}$, $R_2(Q) = 1 + \frac{\lambda}{|G(Q)|^2} \quad , \qquad \frac{\lambda}{|A|} = 1$ $R_3(Q_3) = 1 + \frac{\lambda}{(|G(Q_{12})|^2 + |G(Q_{23})|^2 + |G(Q_{13})|^2)}$ from 2-particle BEC + $2\lambda^{1.5} \Re \{G(Q_{12})G(Q_{23})G(Q_{13})\}$ from genuine 3-particle BEC $R_3^{\text{genuine}} = 1 + 2\lambda^{1.5} \Re \{ G(Q_{12}) G(Q_{23}) G(Q_{13}) \}$ $\omega = \frac{R_3^{\text{genuine}}(Q_3) - 1}{2\sqrt{(R_2(Q_{12}) - 1)(R_2(Q_{23}) - 1)(R_2(Q_{13}) - 1))}}$ where $\omega = \cos(\phi_{12} + \phi_{23} + \phi_{13})$ $\omega = \frac{R_3^{\text{genuine}}(Q_3) - 1}{2\sqrt{R_2(Q_3) - 1}} \quad \text{if } f(x) \text{ is Gaussian}$

Completely incoherent particle production implies $\lambda = 1$ $\omega = 1$

3π BEC

W. J. Metzger — BEC in e^+e^- — WPCF, Kroměříž — 16 August 2005

$$\omega = rac{R_3^{ ext{genuine}}(Q_3) - 1}{2\sqrt{R_2(Q_3) - 1}}$$

Using K_3°

Conclusion: Data consistent with $\omega = 1$, *i.e.*, with completely incoherent pion production

			3π BEC			
	from		Gaussian	Edgeworth		
	R_2	λ	$0.45 \pm 0.06 \pm 0.03$	$0.72 \pm 0.08 \pm 0.03$		
13.	R_3^{genuine}		$0.47 \pm 0.07 \pm 0.03$	$0.75 \pm 0.10 \pm 0.03$		
LJ.	R_2	r	$0.65 \pm 0.03 \pm 0.03$	$0.74 \pm 0.06 \pm 0.02$		
	$R_3^{ m genuine}$	(fm)	$0.65 \pm 0.06 \pm 0.03$	$0.72 \pm 0.08 \pm 0.03$		

Values of λ , r from Gaussian, Edgeworth are different

Values of λ , r from R_2 and R_3^{genuine} are consistent.

expt.		λ	r	
MARK-II (29 GeV)	$\begin{array}{c} R_2 \\ R_3 \end{array}$	$\begin{array}{c} 0.45 \pm 0.03 \pm 0.04 \\ 0.54 \pm 0.06 \pm 0.05 \end{array}$	$\begin{array}{c} 1.01 \pm 0.09 \pm 0.06 \\ 0.90 \pm 0.06 \pm 0.06 \end{array}$	Values of λ , r from
DELPHI	$egin{array}{c} R_2 \ R_3^{ ext{genuine}} \end{array}$	$\begin{array}{c} 0.35 \pm 0.04 \pm 0.?? \\ 0.53 \pm 0.07 \pm 0.10 \end{array}$	$\begin{array}{c} 0.42 \pm 0.04 \pm 0.?? \\ 0.93 \pm 0.06 \pm 0.04 \end{array}$	R_2 and R_3 are fairly consistent.
OPAL	$egin{array}{c} R_2 \ R_3^{ ext{genuine}} \end{array}$	$\begin{array}{c} 0.76 \pm 0.03 \pm 0.05 \\ 0.79 \pm 0.01 \pm 0.06 \end{array}$	$\begin{array}{c} 1.00 \pm 0.02 \substack{+0.02 \\ -0.10} \\ 0.82 \pm 0.01 \pm 0.04 \end{array}$	

BEC in String Models

Longitudinal BEC

- Different string configurations give same final state
- Matrix element to get a final state depends on area, A:

 $\mathcal{M} = \exp\left[(\imath \kappa - b/2)A\right]$

where κ is the string tension and b is the decay constant $\kappa \approx 1 \,\text{GeV/fm}$ and $b \approx 0.3 \,\text{GeV/fm}$

• So, must sum all the amplitudes But 3- π BEC incoherent ??

Transverse BEC

• Transverse momentum via tunneling, also related to b

Using b from tuning of JETSET, predict

• BEC, including genuine 3-particle BEC

•
$$r_{\rm t} < r_{\rm L}$$

•
$$r(\pi^0 \pi^0) < r(\pi^+ \pi^+)$$

2-particle BEC $\pi^0\pi^0$ and $\pi^{\pm}\pi^{\pm}$

- Many measurements of BEC with charged π 's
- but few with π⁰'s in e⁺e⁻: L3, P.L. B524 (2002) 55

OPAL, P.L. B559 (2003) 131

Selection:

OPAL	L3
$p_{\pi^0} > 1.0 \mathrm{GeV}$	$E(\pi^{\rm 0}) < 6.0 {\rm GeV}$
2-jet, $T>0.9$	all events

- Naively expect same BEC for $\pi^0\pi^0$ and $\pi^\pm\pi^\pm$
- Hadronization with local charge conservation, e.g., string, $\Longrightarrow R_{00} < R_{\pm\pm}$
- But most π 's from resonances dilutes this effect.

2-particle BEC $\pi^0\pi^0$ and $\pi^{\pm}\pi^{\pm}$

Ζ-				
	Expt.	$ ho_0$	R (fm)	λ
	$\pm\pm$ OPAL	+-	$1.00\substack{+0.03\\-0.10}$	0.57 ± 0.05
BEC from Z decays	L3	mix	0.65 ± 0.04	0.45 ± 0.07
Gaussian parametrization	L3 3- π	mix	0.65 ± 0.07	0.47 ± 0.08
	lg $E_\pi < 6{ m GeV}$	MC	0.46 ± 0.01	0.29 ± 0.03
	00 L3 $E_{\pi} < 6 \text{GeV}$	MC	0.31 ± 0.10	0.16 ± 0.09
	OPAL $E_{\pi} > 1$, 2-je	t MC	0.59 ± 0.09	0.55 ± 0.14

2-particle BEC $\pi^0\pi^0$ and $\pi^{\pm}\pi^{\pm}$

- L3: $R_{00} < R_{\pm\pm}$ and $\lambda_{00} < \lambda_{\pm\pm}$, both 1.5 σ
- ALEPH, DELPHI find $R_{\pm\pm}(\text{mix})/R_{\pm\pm}(+-) \approx 0.68$, 0.51 Applying this to OPAL $R_{\pm\pm}$, OPAL $R_{00} \approx R_{\pm\pm}$ and $\lambda_{00} \approx \lambda_{\pm\pm}$
- L3 and OPAL $\pi^0\pi^0$ results disagree by 2σ
- But L3: $\begin{aligned} R_{\pm\pm}(\mathsf{all } \pi) > R_{\pm\pm}(< \mathsf{6 \, GeV}), & \lambda_{\pm\pm}(\mathsf{all } \pi) > \lambda_{\pm\pm}(< \mathsf{6 \, GeV}) \\ \text{So, maybe } R_{00}(E_{\pi} > 1) > R_{00}(\mathsf{all}), & \lambda_{00}(E_{\pi} > 1) > \lambda(\mathsf{all}) \end{aligned}$
- Is the L3-OPAL $\pi^0 \pi^0$ difference due to $E_{\pi} > 1$ GeV and/or 2-jet ???
- OPAL: MC shows that few of selected π^0 's are direct from string

Another source of $q\overline{q}$: W

 $e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}q\overline{q}$ If independent decay of W^+W^- , $\rho_{4q}(p_1, p_2) = \rho^+(p_1, p_2) = 1,2 \text{ from W}^+$ + $\rho^{-}(p_1, p_2)$ 1,2 from W⁻ + $\rho^+(p_1)\rho^-(p_2)$ 1 from W⁺, 2 from W⁻ $+ \rho^+(p_2)\rho^-(p_1)$ 1 from W⁻, 2 from W⁺ Assuming $\rho^+ = \rho^- = \rho_{2q}$, W separation ~ 0.7 fm $\rho_{4g}(p_1, p_2) = 2\rho_{2g}(p_1, p_2) + 2\rho_{2g}(p_1)\rho_{2g}(p_2)$ Inter-W BEC \implies W decays *not* independent \implies this relation does *not* hold. Measure

- $\rho_{4q}(p_1, p_2)$ from $e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}q\overline{q}$
- $\rho_{2q}(p_1, p_2)$ from $e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}\ell\nu$
- $\rho_{2q}(p_1)\rho_{2q}(p_2)$ from $\rho_{mix}(p_1, p_2)$ obtained by mixing $\ell^+ \nu q \overline{q}$ and $q \overline{q} \ell^- \nu$ events

 $W^+W^- \rightarrow q \overline{q} q \overline{q}$

Measure violation of $\rho_{4q}(Q) = 2\rho_{2q}(Q) + 2\rho_{mix}(Q)$

by

$$\begin{split} \Delta \rho(Q) &= \rho_{4q}(Q) - [2\rho_{2q}(p_1, p_2) + 2\rho_{mix}(p_1, p_2)] \\ D(Q) &= \frac{\rho_{4q}(Q)}{2\rho_{2q}(Q) + 2\rho_{mix}(Q)} \\ \delta_{I}(Q) &= \frac{\Delta \rho(Q)}{2\rho_{mix}(Q)} \end{split}$$

 $\delta_{\rm I}(Q)$ measures genuine inter-W BEC

Compare to expectation of BE_{32} model in PYTHIA

But conclusions are tricky: Also effect in (+, -)

Summary

- Comparison between experiments is difficult.
 - reference samples
 - MC corrections
- No evidence for \sqrt{s} dependence of rMultiplicity dependence is largely due to number of jets.
- r(mesons) > r(baryons)no evidence for $r \sim 1/\sqrt{m}$
- $\sim 20\%$ elongation along thrust axis
- genuine 3- π BEC, consistent with 2- π BEC — inconsistent with string model? consistent with complete incoherence
- $R_{00} < R_{++}$??
- BEC is same in W \rightarrow q \overline{q} and Z \rightarrow q \overline{q}
- In $W^+W^- \rightarrow q\overline{q}q\overline{q}$, inter-W BEC is less than BEC within a single W how much? \sqrt{s} -dependent? experimental acceptance dependent? but BEC model (BE_{32}) is inadequate

- consistent with string model

28