New pion HBT results from STAR

Sergey Panitkin

Brookhaven National Lab

STAR Collaboration

Outline

- ***** Introduction and motivation
- ★ 62 GeV AuAu
- ★ 200 GeV CuCu
- * Summary

Identical meson correlations

$$C(q_o, q_s, q_l) = 1 + \lambda \cdot e^{-(q_o^2 R_o^2 + q_s^2 R_s^2 + q_l^2 R_l^2)}$$

Decompose q into components:

- q_{Long} : in beam direction
- q_{Out} : in direction of transverse momentum K_T

 $\mathbf{q}_{\text{Side}} \ : \perp \mathbf{q}_{\text{Long}} \ \& \ \mathbf{q}_{\text{Out}}$

$$q = p_1 - p_2$$

 $k = \frac{p_1 + p_2}{2}$

Radii are related to source variances:

$$R_{o}^{2}(\vec{K}) = \left\langle \left(\tilde{x}_{out} - \beta_{\perp} \tilde{t} \right)^{2} \right\rangle (\vec{K})$$
 Sensitive to emission time

$$R_{s}^{2}(\vec{K}) = \left\langle \tilde{x}_{side}^{2} \right\rangle (\vec{K})$$
 Sensitive to transverse extent

$$R_{1}^{2}(\vec{K}) = \left\langle \left(\tilde{x}_{long} - \beta_{1} \tilde{t} \right)^{2} \right\rangle (\vec{K})$$
 Sensitive to longitudinal extent

n Longitudinally Co-Moving System (LCMS)
$$\beta_1 = 0$$

CuCu 200 GeV Gaussian Fit

R

0-10% Centrality Kt [0.25-0.35] GeV/c 30 MeV/c projections

Bowler-Sinykov Gaussian fit

Femtoscopic signature of QGP

Long-standing favorite signature of QGP:

AR

- Lattice QCD -> Speed of sound goes to zero (pressure drop) at phase transition
- increase in τ , R_{OUT}/R_{SIDE} due to deconfinement \leftrightarrow confinement transition
- hoped-for "turn on" as QGP threshold is reached ("softest point")

Energy dependence of pion HBT

- •AuAu (PbPb) •Y~0 •<Kt>~170 MeV
- •Central ~10%

Smooth energy dependence

Where is the softest point ?

Lower energies? Lighter systems?

Centrality dependence of the Kt dependence

AuAu at 62 GeV

Bin 6 - 0-5% Bin 5 - 5-10% Bin 4 - 10-20% Bin 3 -20-30% Bin 2 - 30-50% Bin 1 - 50-80%

STAR

Radii decrease for less central events Radii decrease with Kt (consistent with flow) Lambda parameter grows with Kt

Sergey Panitkin

AuAu 62 GeV. Comparison to PHOBOS

PHOBOS nucl-ex/0409001

'AR

Comparison between 62 and 200 GeV AuAu

200 GeV published PRC 71 (2005) 62 GeV preliminary

STAR

Energy dependence of pion HBT

Smooth dependence at RHIC energies Some growth in Rlong – longer evolution

What does it tell us about order of phase transition ?

Is 1st order phase transition ruled out ?

Do we need to run at 40 GeV ?

Sergey Panitkin

Centrality dependence of the Kt dependence

Cu+Cu @ 200 GeV, positive pions

Radii decrease for less central events Radii decrease with Kt (consistent with flow) Lambda parameter grows with Kt

Sergey Panitkin

Comparison to Au+Au at 200 GeV

AR

<u>Most central:</u> AuAu 0 - 5% CuCu 0 – 10%

Sure, Cu is smaller than Au !

Comparison to initial size

AR

- •Same energy: 200 GeV
- •Glauber model estimate of initial size
- •x2 expansion in AuAu
- •Cu bridges dAu and AuAu

Multiplicity scaling of pion radii at RHIC

- ★ First HBT measurements in Cu+Cu collisions at RHIC at 200 GeV
- ☆ Preliminary pion HBT radii in Cu+Cu show clear centrality and Kt dependence, similar to Au+Au
- ***** Expansion in heavy ion collisions , x2 in AuAu at 200 GeV
- ★ Preliminary results from AuAu at 62 GeV confirm weak energy dependence of HBT radii at RHIC
- \star Multiplicity scaling of pion (N_{ch}^{1/3}) radii is observed, similar to lower (AGS, SPS) energies
- ★ Multiplicity scaling is consistent with no change in dynamics between CuCu and AuAu

★ A marine biologist, after a long and careful study using a net with 10 inch cells, concluded that all fish is bigger than 10 inches.

