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What is meant by boost-invariance?
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approximate scaling solution 

asymptptic Bjorken solution finite energy Bjorken solution

v = z/t

spectra and correlation radii same in LCMS spectra and correlation radii same in LCMS

across finite rapidity interval (’plateau’)

v = z/t

(’3d hydro’)

spectra and correlation radii in LCMS depend 
on dN/dη

v = z/t/ /

spectra and correlation radii in LCMS
depend on time evolution and on dN/d η

non−boost−invariant expansion



Fireball evolution

Starting point: entropy density

S =

∫

d3xNR(r, τ)H(ηs, τ) using

R(r, τ) = 1/

(

1 + exp

[

r − Rc(τ)

dws

])

H(ηs, τ) = 1/

(

1 + exp

[

ηs − Hc(τ)

ηws

])

Rc(τ) expanding from R0 to RF

→ determines transverse flow field assuming vT (τ, r) = r/Rvmax
T (τ)

Hc(τ) from η0 to ηf

→ non-Bjørken dynamics

EOS from lattice QCD
→ T (ηs, r, τ)

Can be tuned quickly to simulate all of the scenarios shown previously



Fireball evolution

Hadron emission: Cooper-Frye formula

E
d3N

d3p
=

g

(2π)3

∫

dσµpµ exp

[

pµuµ − µi

Tf

]

= d4xS(x, p)

emission hypersurface
with spacelike normal

z

t

emission hypersurface
with timelike normal

(almost Blast Wave) d2N

m⊥dm⊥dy
=

Z R

0
Aim⊥K1

„

m⊥ cosh ρ

T

«

I0

„

p⊥ sinh ρ

T

«

is based on

K1(z) =

Z

∞

0
cosh ηs exp[−z cosh η]dη

for η = ηs — in the general case, the integral has to be done numerically.

Differences to Blast Wave:
• η 6= ηs • RF and v⊥ correlated • evolution from initial to final state

• spacelike emission hypersurface • explicit link to EOS



RHIC model comparison
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• absolute normalization: entropy S0

(input parameter)
• relative normalization: statistical
hadronization (model prediction)
• spectral shape: evolution model
result (fitted)
• missing: resonance decays (low kt)
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⇒ describes simultaneously mt-spectra, HBT, RAA and photon emission (so far)



Some caveats

Disclaimers:

• The framework describes thermal physics
⇒ not applicable in target/projectile fragmentation region
⇒ not applicable in dilute regions (large fraction of matter below TF ab initio)
⇒ moderately constrained at forward rapidities, central collisions only!

• HBT correlation radii are calculated as averages over the emission function

R2
side(K) = 〈ỹ2〉(K)

R2
out(K) = 〈(x̃ − β⊥t̃)2〉(K)

R2
long(K) = 〈(z̃ − βlt̃)

2〉(K)

x̃µ(K) = xµ − 〈xµ〉(K) with 〈f〉(K) =

∫

d4xf(x)S(x, K)
∫

d4xS(x, K)

⇒ no explicit calculation of the correlator



HBT at midrapidity — the standard scenario
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Rapidity dependence of HBT

Two essential effects:

• ’trivial rapidity dependence induced by observed dN/dη
(for approximate scaling and non-Bjorken)
⇒ amount of thermalized matter determines the geometry

• time dependence of dN/dη
(for non-Bjorken)
⇒ matter radiates into different rapidities at different times

but. . .

• time dep. only visible if emission not dominated by sudden breakup



Three scenarios

Three different evolutions leading to the same dN/dη

• approximate scaling solution (hadronic mT , dN/dη, Rside)

• non-Bjorken expansion with sudden breakup (hadronic mT ,
dN/dη and HBT at midrapidity)

• non-Bjorken expansion with continuous emission (hadronic mT ,
dN/dη, Rside, Rlong)

⇒ study in comparison



Sudden breakup vs. continuous emission
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• dilute (Gaussian) surface: fireball shrinks
→ emission from spacelike surface dominant
• sharp (Box) surface: fireball expands
→ emission from timelike surface dominant

⇒ dN/dτ looks different in both cases!
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⇒ for the best fit dws = 0.2 fm, hadron
emission can be seen as final breakup +
corrections

⇒ for inward-burning solution Rout/Rside

starts to get larger

The measured Rout/Rside favours a sudden breakup solution



Rapidity dependence of Rside

approx. scaling (1) sudden breakup (2) slow breakup (3)
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Rapidity-independent physics:
• (1): stronger longitudinal expansion than (2),(3) ⇒ less transverse expansion at τF

Rapidity-dependent physics:
• forward region in (3) initially populated by thermal tail ⇒ smaller scale



Rapidity dependence of Rout

approx. scaling (1) sudden breakup (2) slow breakup (3)
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Rapidity-independent physics:
• (3): negative x − t correlation due to inward burning Cooper-Frye surface
• (1): negative x − t correlation due to strong long. expansion and cooling



Rapidity dependence of Rlong

approx. scaling (1) sudden breakup (2) slow breakup (3)
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Rapidity-independent physics:
• (1): strong long. expansion and mapping ηs = η
• (2),(3): ηs < η

Rapidity-dependent physics:
• (2),(3): sensitive to the ’drop’ of thermalized matter distribution



Conclusions

HBT correlation radii ⇔ interplay of many effects

• balance between longitudinal/transverse expansion
• relation between η and ηs

• temporal pattern of emission
• amount of thermalized matter per rapidity
• evolution history
• . . .

However:

If Rout/Rside implies sudden final breakup, the rapidity dependence of HBT
correlations is dominated by the ’trivial’ dependence on the measured dN/dη.

⇒ photons still see the whole evolution


