Azimuthally sensitive femtoscopy and v_2

Boris Tomášik

The Niels Bohr Institute and NPI ASCR Řež

WPCF 2005 Kroměříž, August 15-17, 2005

supported by Marie Curie fellowship

1 Motivation

- v_2 : caused by spatial and/or flow anisotropy
- ⇒ correlation between spatial and flow anisotropy
- $\bullet \phi$ dependence of HBT: caused by spatial and/or flow anisotropy
- ⇒ some other correlation between spatial and flow anisotropy

Can we determine spatial <u>and</u> flow anisotropy from <u>both</u> v_2 and asHBT? (recall measuring T and v_T from p_T -spectra and HBT radii)

Statements in literature:

- ullet not possible to conclude on spatial anisotropy from v_2 but HBT will do [STAR, PRL $oldsymbol{87}$ (2001) 182301]
- different final states of hydro simulations distinguished by HBT
 [U Heinz, P F Kolb, PLB 542 (2002) 216]

Motivation: questions asked here

- ullet What is the correlation between spatial and flow anisotropy in determining v_2 ?
- What is the correlation between spatial and flow anisotropy in determining the azimuthal dependence of HBT radii?
- Can we unambiguously get both anisotropies from data?
- \rightarrow Study these questions by exploring a large class of models expressed via the blast-wave parametrisation.

2 The azimuthally anisotropic blast-wave model

- ullet thermalised, temperature T
- longitudinally boost-invariant expansion
- ellipsoidal transverse profile

$$S(x,p) \propto \Theta(1-\tilde{r}), \qquad \tilde{r} = \sqrt{\frac{x^2}{R_x^2} + \frac{y^2}{R_y^2}}$$

spatial anisotropy parameter a:

$$R_x = a R, \qquad R_y = \frac{R}{a}$$

out-of-plane source: $R_x < R_y$, a < 1

in-plane source: $R_x > R_y$, a > 1

The ... model: transverse flow

• two models differ in the azimuthal variation of flow velocity

Model 1

[Retière & Lisa, PRC **70** (2004) 044907]

$$\rho(r,\phi) = \tilde{r} \,\rho_0 \,(1 + \rho_2 \,\cos(2\phi_b))$$

early expansion pattern: $\vec{v} \parallel \vec{a} \parallel \nabla p$

Model 2

$$\rho(r,\phi) = \tilde{r} \,\rho_0 \left(1 + \rho_2 \,\cos(2\phi_s)\right)$$

possibly later expansion pattern

3 The elliptic flow, v_2

second Fourier coefficient of azimuthal dependence of the spectrum

$$P_1(p_T, \phi) = \frac{1}{2\pi} \left. \frac{d^2N}{p_T dp_T dy} \right|_{y=0} (1 + 2v_2(p_T)\cos(2\phi) + \dots)$$

the two used models give

$$v_2 = \frac{\int_0^1 d\tilde{r} \, \tilde{r} \int_0^{2\pi} d\phi \, \cos(2\phi) \, \boldsymbol{J}(\phi) \, K_1(\cdots) \, I_2(\cdots)}{\int_0^1 d\tilde{r} \, \tilde{r} \int_0^{2\pi} d\phi \, \boldsymbol{J}(\phi) \, K_1(\cdots) \, I_0(\cdots)}$$

the results for different Models differ only in $J(\phi)$

Model 1:
$$J(\phi) = (a^2 \cos^2 \phi + a^{-2} \sin^2 \phi)^{-1}$$

Model 2:
$$J(\phi) = (a^{-2}\cos^2\phi + a^2\sin^2\phi)^{-1}$$

 \Rightarrow same v_2 can be obtained from one in-plane (a < 1) and other out-of-plane (a > 1) source!

The correlation between a and ρ_2

- $ullet v_2$ calculated with Model 1 for pions and protons
- $\bullet T = 100 \, {
 m MeV}$, $ho_0 = 0.88$
- ullet get results for Model 2 by $a o a^{-1}$
- \Rightarrow for given Model can disentangle dependence on a and ρ_2 by looking at different species

 \Rightarrow If the Model is known obtain T and ho_0 from fit to azimuthally integrated spectrum, and ho_2 and a from fit to v_2

4 Azimuthally sensitive HBT

explicit ϕ -dependence:

sensitive to spatial anisotropy (a)

implicit ϕ -dependence:

generated by transverse flow and its anisotropy (ρ_2)

Fourier expansion of the radii at midrapidity

$$R_o^2(\phi) = R_{o,0}^2 + 2R_{o,2}^2 \cos 2\phi + \dots$$

$$R_s^2(\phi) = R_{s,0}^2 + 2R_{s,2}^2 \cos 2\phi + \dots$$

$$R_{os}^2(\phi) = 2R_{os,2}^2 \sin 2\phi + \dots$$

$$R_l^2(\phi) = R_{l,0}^2 + 2R_{l,2}^2 \cos 2\phi + \dots$$

- ullet look at R_o^2 and R_s^2
- ullet study $R_{i,2}^2/R_{i,0}^2$: sensitive to a and ho_2 but less sensitive to R and ho_0

- ullet at low p_T similar results at given a (unlike v_2)
- ullet Model 2: at high p_T flow-dominated behaviour; not in Model 1
- HBT sensitive mainly to spatial anisotropy

Which model fits the STAR data?

ullet both models fit v_2 for π and p (related by $a \to a^{-1}$)

- Model 1 fits qualitatively well, Model 2 does not
- flow pattern at LHC might possibly lead to Model 2

5 Conclusions

shown analytically and/or in numerical analysis of parameter space:

- ullet from v_2 solely cannot determine spatial and flow anisotropy
- in-plane and out-of-plane can be distinguished from asHBT
- ullet if the type of Model is known: disentangle spatial and flow anisotropy from v_2 for different species

[BT, Acta Physica Polonica B **36** (2005) 2087 (nucl-th/0409074)]