Invariance group important for the interpretation of Bose-Einstein correlations

Kacper Zalewski

¹M. Smoluchowski Institute of Physics, Jagellonian University, Krakow, Poland

²Institute of Nuclear Physics of the Polish Academy of Sciences

Kromeriz 2005

From measured momentum distributions to inferences about the interaction regions

V stands for: information about the interaction region

```
\triangleright :-( Emission function S(K, X) :-) V
```

$$ightharpoonup$$
:-) Distribution of relative distance $\mathcal{S}_{\mathcal{K}}(\Delta \mathbf{x})$:-(V

▶ :-(Single particle density matrix
$$\rho(\mathbf{p}; \mathbf{p'}; t \gg t_f)$$

$$\rho(\mathbf{p}; \mathbf{p'}; t_{fmax})$$

$$\begin{array}{ll} \bullet & :-) & \rho(\mathbf{p}; \mathbf{p'}; t_{fmax}) \\ \bullet & :-(& \rho(\mathbf{x}; \mathbf{x'}; t_f) \text{ or } W(\mathbf{K}, \mathbf{X}, t_f) & :-) & V \end{array}$$

Ambiguity in the determination of the density matrix elements from the measured momentum distributions

J. Karczmarczuk, Nucl. Phys. B78(1974)370.

A. Bialas and K. Zalewski, hep-ph/0501017.

In most models

$$\rho(\mathbf{p}_1,\ldots,\mathbf{p}_k;\mathbf{p}_1,\ldots,\mathbf{p}_k) = \sum_P \prod_{i=1}^k \rho_1(\mathbf{p}_i;\mathbf{p}_{Pi})$$

Example

$$\rho(\mathbf{p}_1, \mathbf{p}_2; \mathbf{p}_1, \mathbf{p}_2) = \rho_1(\mathbf{p}_1, \mathbf{p}_1)\rho_1(\mathbf{p}_2; \mathbf{p}_2) + |\rho_1(\mathbf{p}_1; \mathbf{p}_2)|^2$$

All momentum distribution are invariant under the replacement of $\rho_1(\mathbf{p}; \mathbf{p}')$ by

$$\rho_{1\alpha}(\mathbf{p}; \mathbf{p}') = e^{i\alpha(\mathbf{p})}\rho_1(\mathbf{p}; \mathbf{p}')e^{-i\alpha(\mathbf{p}')},$$

where $\alpha(\mathbf{p})$ is any real-valued function of \mathbf{p} .

Implications for the emission function

$$\rho(\mathbf{p}_1; \mathbf{p}_2) = \int d^4 X \ S(K, X) e^{iqX}$$

$$K = \frac{1}{2}(p_1 + p_2); \quad q = p_1 - p_2; \quad \Rightarrow Kq = 0$$

$$\rho_{\alpha}(\mathbf{p}_{1}, \mathbf{p}_{2}) = \int d^{4}X' \ S(K, X') e^{iq(X'+b+cK)}$$

$$X = X' + b + cK$$

$$\rho_{\alpha}(\mathbf{p}_1, \mathbf{p}_2) = \int d^4X \ S(K, X - b - cK)e^{iqX}$$

▶ Thus
$$S_{\alpha}(K,X) = S(K,X-b-cK)$$

▶ For
$$b = 0$$
: $\rho_{\alpha} = \rho$, but $S_{\alpha}(K, X) = S(K, X - cK)$

Implications for the density matrix elements $\rho(\mathbf{x}; \mathbf{x})$ and for the Wigner function

$$\rho(\mathbf{K}, \mathbf{q}) = \frac{1}{(\sqrt{2\pi\Delta^2})^3} \exp\left[-\frac{\mathbf{K}^2}{2\Delta^2} - \frac{1}{2}R^2\mathbf{q}^2\right]$$

$$\qquad \qquad \alpha(\mathbf{p}) = \mathbf{b} \cdot \mathbf{p} + \frac{1}{2}c\mathbf{p}^2; \quad \Rightarrow \alpha(\mathbf{p}_1) - \alpha(\mathbf{p}_2) = \mathbf{b} \cdot \mathbf{q} + c\mathbf{K} \cdot \mathbf{q}$$

$$\rho(\mathbf{x}; \mathbf{x}) = \int dK dq \ e^{i\mathbf{q}\cdot\mathbf{X}} \rho(\mathbf{K}, \mathbf{q})$$

- $\blacktriangleright W(\mathsf{K},\mathsf{X}) = \int \frac{dq}{(2\pi)^3} e^{i\mathsf{q}\cdot\mathsf{X}} \rho(\mathsf{K},\mathsf{q})$
- $\blacktriangleright W_{\alpha}(\mathsf{K},\mathsf{X}) = \frac{1}{(2\pi R\Delta)^3} \exp\left[-\frac{\mathsf{K}^2}{2\Delta^2} \frac{(\mathsf{X} + \mathsf{b} + \mathsf{c}\mathsf{K})^2}{2R^2}\right]$

Implications for the density matrix elements $\rho(\mathbf{x}; \mathbf{x})$ and for the Wigner function

$$\rho(\mathbf{K}, \mathbf{q}) = \frac{1}{(\sqrt{2\pi\Delta^2})^3} \exp\left[-\frac{\mathbf{K}^2}{2\Delta^2} - \frac{1}{2}R^2\mathbf{q}^2\right]$$

$$\qquad \qquad \alpha(\mathbf{p}) = \mathbf{b} \cdot \mathbf{p} + \frac{1}{2}c\mathbf{p}^2; \quad \Rightarrow \alpha(\mathbf{p}_1) - \alpha(\mathbf{p}_2) = \mathbf{b} \cdot \mathbf{q} + c\mathbf{K} \cdot \mathbf{q}$$

$$\mathbf{W}(\mathbf{K}, \mathbf{X}) = \int \frac{dq}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{X}} \rho(\mathbf{K}, \mathbf{q})$$

$$W_{\alpha}(\mathbf{K}, \mathbf{X}) = \frac{1}{(2\pi R \Delta)^3} \exp \left[-\frac{\mathbf{K}^2}{2\Delta^2} - \frac{(\mathbf{X} + \mathbf{b} + c\mathbf{K})^2}{2R^2} \right]$$

How to get the additional information?

Application: explication of the dependence $r_T(M_T)$

- T. Csörgö and J. Zimányi, *Nucl. Phys.* **A51**7(1990)588.
- A. Bialas et al. Phys. Rev. D62(2000)114007.

• $K^{\mu} = \lambda X^{\mu}$ Hubble flow

$$X_0^2 - X_{\parallel}^2 = \tau^2; \quad K_0^2 - K_{\parallel}^2 = M_T^2; \quad \Rightarrow \lambda = \frac{M_T}{\tau}$$

True under the assumption of position-momentum correlations as given above

Alternative interpretation of the data

$$> S_T = \exp\left[-\frac{\phi_T^2}{2R_D^2} - \frac{(\mathbf{X}_T - \phi_T)^2}{2R_\phi^2}\right]$$

 $ightharpoonup \langle {f X}_T^2
angle = 2R_\phi^2 < 2r_T^2$ and M_T - dependent. "Measured" under the assumption of no momentum-position correlations

A more complicated example

$$lackbox{d}=1; \quad
ho(\mathcal{K},q)=rac{1}{\sqrt{2\pi\Delta^2}}\,\exp\!\left[-rac{\mathcal{K}^2}{2\Delta^2}-rac{1}{2}\mathcal{R}^2q^2
ight]$$

•
$$\alpha(p) = \frac{4}{3a^3}p^3$$
; $\Rightarrow \alpha(p_1) - \alpha(p_2) = \frac{4}{3a^3}q\left(4K^2 + \frac{q^2}{3}\right)$

where Ai(...) is the Airy function and

$$ightharpoonup A=a ilde{X}+rac{\omega^4}{4}; \quad B=rac{\omega^2}{2}\left[A-rac{\omega^4}{12}
ight]; \quad \omega=aR; \quad ilde{X}=X-rac{4}{a^3}K^2$$

Fig. 1: Emission functions $S_{\alpha}(K=0,X)$ for: aR=0 (red), aR=1 (green) and aR=2 (blue). $\langle X \rangle$ is the average value of X at given aR and K=0.

Conclusions

- Data without additional assumptions tell us little about the interaction regions.
- ► The same fit can be obtained from models widely different in these additional assumptions and thus giving conflicting information about the interaction region.
- ▶ How to obtain and how to test the additional assumptions?