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From measured momentum distributions to inferences
about the interaction regions

V stands for: information about the interaction region
> Emission function S(K, X) =) Vv
> ) Distribution of relative distance Sk(Ax) (Vv

> ( Single particle density matrix p(p; p’; t > tf)

L2 :_) ,O(p; p,; tfmax)
» p(x;x"; tr) or W(K, X, tf) =) Vv
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Problem with emission functions

Problem with density matrices and Wigner functions
Example: mass dependence of the interaction region
Another example
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Ambiguity in the determination of the density matrix

elements from the measured momentum distributions
J. Karczmarczuk, Nucl. Phys. B78(1974)370.
A. Bialas and K. Zalewski, hep-ph/0501017.

In most models
k
P(PLs- - PkiP1, - Pk) = 2p [ 121 p1(Pii Ppi)

Example
p(P1, P2 P1,P2) = p1(P1, P1)p1(P2i P2) + p1(P1i P2) 2

All momentum distribution are invariant under the
replacement of p;(p; p’) by

pra(p; p') = &P py (p; p')e~ioP),
where a(p) is any real-valued function of p.
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Implications for the emission function

> p(p1;py) = [d*X S(K, X)e™?*
» K=Lpi+p) g=pi—p =Kg=0
> a(p) = bp+ 3¢p* = a(p1) — a(p2) = bq + cKq

v

pa(P1,P2) = fd4X, S(K, X’)eiq(XlerJrCK)
» X=X+b+cK
pa(Py,p2) = [d*X S(K,X — b~ cK)e'

v

v

Thus Sa(K, X) = S(K, X — b— cK)

v

For b=0: po = p, but S,(K, X) = S(K, X — cK)
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Implications for the density matrix elements p(x;x) and for
the Wigner function

> p(K0) = s exp[ X - 1quz]

» a(p) =b-p+3cp* = ap;)—a(p) =b-q+cK-q

> p(x;x) = [dKdq "9 %p(K, q)

1 (x=b)? }

> PalXiX) = s exp| s rodam)
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Problem with density matrices and Wigner functions

Implications for the density matrix elements p(x;x) and for
the Wigner function

> p(K0) = s exp[ X - 1quz]
» a(p) =b-p+3cp* = ap;)—a(p) =b-q+cK-q

v

p(x;x) = [dKdq e p(K, q)

. o 1 x—b)?
pa(xi X) - 2m(R2+c2A2) exp[— 2("_\(’2+62A2):|

v

v

= [z €% p(K, q)

2 (X+btcK)?
> Wa(K.X) = 7 I%A)3 eXp[_zKT = R ) }

How to get the additional information?
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Application: explication of the dependence rr(M7)
T. Cs6rgd and J. Zimanyi, Nucl. Phys. A517(1990)588.
A. Bialas et al. Phys. Rev. D62(2000)114007.

» KF = AX* Hubble flow
> XG-XP=1% K§-KP=M3 =a=1

T

X2 K1—AX7)?
>S:5H St; ST:eXp_ﬁ_( T252TT)]

> (X3) =272

True under the assumption of position-momentum correlations
as given above
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Alternative interpretation of the data

—_'T . — - =t _Kr
> R¢ — my RD - /’LR(z)' ILL 7—57— MT’ ¢T - rT1+,LL2 5T

v

_ K% X7 | . _ __ITu
SaT—eXP[—mg—m' KT =901 = ¢ = Fnm

v

(X3) =2R2 < 2r% and M7- dependent.
"Measured” under the assumption of no momentum-position
correlations
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A more complicated example

»d=1 p(K,q)=

1 K2 1p2 2
e exp[—m—iR q]

> a(p) = 55P% = alp1) —a(p) = (4K2 )

_ a K2 g
> Sa = W exp[—m + B:| AI(A)

where Ai(...) is the Airy function and
4

> A=af+s B=%|A-%| w=aR X=X-4K

Kacper Zalewski Invariance group



Problem with emission functions

Problem with density matrices and Wigner functions
Example: mass dependence of the interaction region
Another example

Introduction
An invariance group and its implications
Conclusions

AV27S, (K =0, X)

‘ a(X = (X))

-10 -8

Fig. 1: Emission functions S,(K = 0, X) for: aR =0 (red), aR =1
(green) and aR = 2 (blue). (X) is the average value of X at given aR
and K =0.
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Conclusions

» Data without additional assumptions tell us little about the
interaction regions.

» The same fit can be obtained from models widely different in
these additional assumptions and thus giving conflicting

information about the interaction region.

» How to obtain and how to test the additional assumptions?
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