
The BackTracker

Brian Rebel	

April, 2014

09/07/05 1

Site Visit

September 1st and 2nd 2005

09/07/05 1

Site Visit

September 1st and 2nd 2005

Back Tracking

• Need a way to map reconstructed objects to the Monte Carlo truth
information	

• Allows for the evaluation of the reconstruction through several levels of
mapping	

• Cell to total collection of sim::FLSHits or sim::PhotonSignals	

• Hit to collection of cheat::TrackIDE (track id and energy) structs	

• Hit to collection of sim::Particles	

• Hit to weighted XYZ position of all particles passing through it	

• Collection of rb::CellHits to sim::Particles contributing to them	

• Collection of rb::CellHits to cheat::TrackIDE structs	

• Energy deposited by a given particle in a rb::CellHit	

• Can also determine the purity and efficiency of a collection of
rb::CellHits given a set of track ids to check against

09/07/05 1

Site Visit

September 1st and 2nd 2005

Back Tracking

• Provides a convenient way to also figure out truth to truth mappings	

• G4 Track ID to simb::MCTruth object	

• G4 Track ID to simb::Mother particle	

• sim::Particle to simb::MCTruth object	

• simb::MCTruth object to all sim::Particles	

• Collection of rb::CellHits to sim::Particles contributing to them	

• Collection of rb::CellHits to cheat::TrackIDE structs	

• Provides a direct link to the sim::ParticleNavigator as well - most of the
above methods use the ParticleNavigator in some way or another	

• Many other mappings available - look at the MCCheater/BackTracker.h
to see what is available

09/07/05 1

Site Visit

September 1st and 2nd 2005

How to Use the BackTracker

• The BackTracker is a service, so you need to be sure it is defined in the user
services block of your .fcl file	

• Also include the .h file in your _module.cc file or .cxx file, i.e.	

	

 	

 #include “MCCheater/BackTracker.h”	

• Then, in your code, grab the service handle by doing 	

	

 	

 art::ServiceHandle<cheat::BackTracker> bt;	

• Next decide what you want to learn from the BackTracker	

09/07/05 1

Site Visit

September 1st and 2nd 2005

• Maybe you just want to see what particles are in the event	

	

 	

 sim::ParticleNavigator const& pn = bt->ParticleNavigator();	

• The ParticleNavigator behaves a lot like a map, has ability to
provide iterators over the collection of particles	

• Then use the navigator to loop over the sim::Particles in the event	

	

 	

 for(auto itr = pn->begin(); itr != pn->end(); ++itr){	

	

 	

 	

 const sim::Particle* part = (*itr).second;	

!
	

 	

 	

 // do something here with the sim::Particle	

 	

 	

 }

Grabbing the Particles in the Event

09/07/05 1

Site Visit

September 1st and 2nd 2005

• Take a rb::CellHit get the sim::Particle that contributed the most light to
make it	

	

 	

 const sim::Particle* part = bt->HitToParticle(rb::CellHit);	

• Can do the same thing for a collection of hits from a cluster, prong, etc	

	

 	

 const std::vector<const sim::Particle*> parts = bt-
>HitsToParticles(hits);	

!
• Use the functions to determine if your hit collection corresponds to the

particles you are interested in or not	

Figure out which Particle contributed
the most light to a Hit

09/07/05 1

Site Visit

September 1st and 2nd 2005

• One way to evaluate the quality of reconstruction is to determine how
pure and efficient the algorithm is	

• BackTracker has functions to tell you the purity and efficiency of a
collection of hits for a given set of track IDs	

• Can return maps of track ID to purity/efficiency	

• Simply use the BackTracker::HitCollectionEfficiency,
BackTracker::HitCollectionPurity methods	

	

 	

Checking Purity and Efficiency

