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1. Motivation 
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High precision LC physics demands a high precision detector:  
- high precision vertex (flavour tagging) and tracking (Higgs from di-lepton recoil mass)  
- precision calorimetry (heavy bosons reconstruction from di-jet decay) 

Higgs production at Large Hadron Collider (7 TeV, CERN)  and 
International Linear Collider (0.5 TeV, ?) 

•Tracker 
 

•Electromagnetic 
calorimeter (ECAL) 
 

•Hadron 
calorimeter (HCAL) 

Background-free 
production of 
interesting events 
à high precision 
physics 



Particle Flow paradigm 
è Reconstruct every particle in the event 
• up to ~100 GeV - tracker is superior to calorimeter à 
• use tracker to reconstruct e ,m ,h    (<65%> of Ejet ) 
• use ECAL for g reconstruction (<25%>) 
• (ECAL+) HCAL for h0 reconstruction (<10%>) 
è HCAL E resolution still dominates Ejet resolution 
è But much improved resolution (only 10% of Ejet in HCAL) 

PFLOW calorimetry = Highly granular detectors  (CALICE)  
 + Sophisticated reconstruction software  

Imaging  
calorimetry 



2. Imaging Calorimeters 

§ CALICE Collaboration –  
 worldwide calorimeter R&D effort 

§ EUDET – European grant under 6th FP, I3 (2006-10)            
AIDA – European grant under 7th FP, INFRA (2011-14) 

§ Electromagnetic Calorimeter with W absorber 
ú Silicon pads 1 x 1 cm2 à 0.5 x 0.5 cm2  
ú Scintillator strips 1 x 4 x 0.35 cm3 with MPPC readout 

§ Hadron Calorimeter with steel (W) absorber 
ú Scintillator tiles with analogue readout 
ú RPC / Micromegas / GEM – with digital readout 

§ Muon Tail Catcher – steel absorber and scintillator strips  

§ Coordinated test beam programme to combine different 
technologies at the same time and prove Particle flow 
paradigm 
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Scintillator-steel HCAL 

§ Absorber 
• 38 layers of steel, 2 cm thick 
• 4.5 λint in total 

§ Active element 
ú Scintillator tiles 3x3 – 12x12 cm2 with 

embedded WLS fibres 
ú Multi-pixel Geiger mode photo-

diodes (SiPMs), B-field proof, small, 
affordable, integrated 

§ Read-out chip 
ú 2 gains (normal, calibration) 
ú HV settings for SiPMs 
ú Shaping and multiplexing 
ú Power consumption 200 mW/5 V 

§ Calibration and monitoring by 
LED flashes, temp. recorded 

§ In beam 2006-9 
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Calibration and monitoring 
ssystem 

Prague main contribution 
LED calibration system provides ~ns light flashes of variable 

intensity: 
§ Gain measurement of SiPM at low intensity light 
§ Measurement of the SiPM response function at high intensity 

light 
One LED illuminates 18 SiPMs and one PIN photodiode to 

monitor the LED signal, light is distributed via optical fibres 
Temperature is monitored by temperature sensors  
ã Gain ~ difference between two neighbour multi-photon peaks 
ß Saturation correction 
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3. Hadron shower measurement 

§ Extensive test beam program 
ú CERN 2006-7 
ú FNAL 2008-9 

§ Beam energies 2-80 GeV 

§ Particles: μ, π, e, unseparated 
hadrons, both polarities 
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Hadron shower 

π- 

ionization 

π0, η 

π±, p, n, ... 

g 

g 

e+ 

e- 

electromagnetic: 
ionization, excitation 

λint 

nucleus 

absorber 

hadronic: ionization, 
invisible (binding, 
recoil) 

Hadronic models in GEANT4 
Variety of models available 
to describe hadron showers: 
• QGSP_BERT → Bertini 
cascadeàGHEISHAàquark 
gluon  string  model 
• FTFP_BERT, FTF_BIC → 
New developments, retuned 
• CHIPS → Experimental, no 
model transition 

• π  absorbed in calorimeter 
• Hadron shower: cascade of 
particles  interacting in 
absorber (~95%) and 
sensitive medium (~5%) 
• Particle energy decreases, 
finally absorbed in calo 
material 
• This complex process 
simulated  - GEANT4, v. 9.3 
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Visible energy 

Mean visible energy for p in 
calorimeter volume 

§ QGSP_BERT, FTFP_BERT lower  ~ 
2% at 8 GeV, overestimate ~ 8% at 
80 GeV 

§ CHIPS overestimates ~ 8%, low 
energy neutron cross-section not 
yet properly implemented 
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Shower depth  

< z > 
• Similar test to the previous slide 
• Variable sensitive to the particle 

content of the shower: 
•  elmg. and hadron shape different 
• protons interact earlier than pions 

for the same energy 
• Shower depth underestimated by FTF 

and QGS models, CHIPS opposite 

z 
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Shower radius 

< r > 
< 

r >
 

r 

<r> MC/DATA = 0.95 

• MC models generally underestimates <r> 
• CHIPS model agrees on the ~% level 
• Lateral shower profile critical for PFA 

performance – particle separation  
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1 m3 DHCAL assembled 

4.Future 
§ HCAL with pad size of ~1 cm2 currently 

tested in beams (ANL, CNRS) : test 
new calorimeter concept – digital 
calorimeter DHCAL 

§ Showers recorded by Restive Plate 
Chambers: 
ú Gas layer 1.1 mm 
ú 2 glass plate painted by high resistivity 

paint R□ = 1 – 5 MΩ 
ú Signal read by 1x1 cm2 pads (pad board) 

with 1 bit (digital) or 2 bits (semidigital) 
readout 

ú Gas gap operates at 6.3 kV 

§ Construction finished in 2011, test 
beam 2011-2 

§ Large  teams  around ANL (USA) and 
CNRS (France) 

§ Main task 
ú Validate DHCAL concept 
ú Gain experience running large RPC 

systems 
ú Measure hadron showers in large details 
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Pion shower at 60 GeV 

Glass 
Pad board 

Frame Frame 
Glass 

Gas Gas 



Detector Integration 

§ From the physics à 
technological prototypes: 
technical solutions for the final 
detector: 

§ Realistic dimensions: octagonal 
shape, 16 equivalent wedges 
ú Minimal dead space 
ú Integrated front/end electronics – 

new chip with ADC integrated 
ú On chip zero suppression 
ú Auto-trigger mode 
ú Small power consumption 

§ Construction 2010-2, test beam 
2012-4 

Short detector  
slabs ( 14) 

3 15 cells Technological 
prototype  

Complete Tower 
of 4 wafers = 18 18 cm2 

Long detector slab (1) 

Short detector  
slabs ( 14) 

Zilina, Sep 6, 2011 13 JC, Shower properties 

ECAL 

HCAL 



5. Summary, Conclusions  

§ Calorimeter prototypes with high granularity were built and 
successfully tested in beams 

§ New photodetector inserted into scintillator tile – Silicon 
photomultiplier – is now commercially available and used in 
many applications 

§ Imaging calorimetry allows for validation of hadron shower 
simulations at an unprecedented level of detail 

§ Comparison of pion shower properties from test beam data 
and GEANT4 simulation  favours FTF based models in the 
energy range 8-80 GeV 

§ In the next step of calorimeter R@D, new prototypes will 
be built which solve problems for construction of the full 
size calorimeters for the final detector  
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BACK UP 



Proč ILC? 
§ Přesná fyzikální měření 
ú  polarizace e- (e+) 
ú  e-e- 

ú eg/gg interakce 
ú GigaZ  

§ Prahová produkce SM Higgse 

σ[e+e- à ZH] ~ √ [s− (mH + mZ)2] 

Možnost stanovit spin H (20 fb-1) 

 

§ Vazbová konstanta - SM částice  p 

 
 

§ Higgs strahlung: e+e-  à ZH 

§ WW fusion:      e+e- à nnH 

v Účinné průřezy pro produkci 

v Rozpadové větvící poměry 

v Vyzáření  t z Higgse 

§ Výrazné zlepšení vzhledem k LHC 

29. 10. 2008 JC, Kalorimetr pro ILC 16 

pF mG22)Hpp( =k

Vylučuje: 
 JP=0-,1-,2-,3±,… 
JP=     1+,2+ 



Energy measurement at  ILC  

q 

q ̄ 

e- 

e+ 
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Jet energy resolution 
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Silicon-Tungsten ECAL 
§ Absorber 
ú 30 layers of W: 1.4, (0.4 X0), 2.8 and 

4.2 mm thick 
ú 24 X0 in total 
§ Active Element 
ú 30 layers of Si diode pads 
  1 cm2, 525 µm thickness 
  6480 channels 

ú ~ ½ sensors from Czech Rep. – 
Prague main contribution 

§ Read-out by ASIC 
ú Large dynamic range 
ú Auto-trigger on ½ MIP  
ú On chip zero suppress 
ú Ultra-low power  « 25 µW/ch 

§ In beam 2006 - 8 
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module 

readout 
chip 

calibration 
chip 
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Array of Single Photon Avalanche 
Diodes 

    I will refer to one SPAD as pixel in the following SPAD 

è typically 100-1000 pixels / mm²  
Some typical pixel parameter: 
-pixel size ~20-30 mm 
-pixel capacitance Cpixel ~ 50 fmF  
-quenching resistor  Rpixel ~ 1-10 MW 

poly-silicon quenching R 

metal (Al) grid Bias bus line 
all pixels connected in parallel  
 only one signal line 
 
è output = Σ pixel signals 
 
typical Bias voltage ~ 2 V above breakdown 
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SiPM properties: single pixel resolution 

SiPM output is the analog sum of all pixel signals 

1600 pixels/mm² 
Hamamatsu 

high gain è pixel signal visible on scope  
- signal rise time < 1 ns 
- fast fall ~ 5-10 ns 
 
recovery time tunable by choice of quenching R 
t ~ RpixelCpixel ~ 20 – 500 ns 

AMPD tested in LNP JINR and PSI  29. 10. 2008 



Calibration and monitoring 
system 

22 

Functionalities of the LED system: 
1) gain calibration at low intensity light 
2) provide reference pulses monitored 
by PIN diodes  
3) provide full dynamic range for checking the 
SiPM response function 
 
Temperature monitored by temperature sensors 

10. listopadu 2010 JC, Kalorimetry pro LC 

∆G/G 
   ∆ T 

 ~ -1.7%/K 



Performance & Stability 

Jaroslav Zalesak, Institute of 
Physics, Prague CALICE in Casablanca, Sep 22, 2010 23 

Example:  
144 fits (FNAL) for one 
channel 
 
• for ‘good’ runs similar 
behavior 

→ extract saturation factor N[ADC] for all channels  
→ apply calibration to pixels & temperature corrections → N[pix] 
→ consistent results for all runs? → averaged over all runs 
→ unique curve for all channels? 

 Fits: one channel, all runs 

N
[A

D
C
] 



Energy reconstruction by software 
compensation – global method 

Cluster finding in HCAL to determine properties of the shower (global) 
(total energy, volume, longitudinal structure … ) 
Used as input to neural net, training with the  MC simulation 

Resolution improved by ~ 25 % 
Non-weighted distribution - larger response 
at higher energies. 
Sw compensation – linearity back to ~ 2% 
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Digital calorimetry  
finer shower imaging 

– Digital readout: count particles in 
shower: gas detectors, silicon 

– To prove the principle and 
compare the energy resolution to 
AHCAL 

– Resistive Plate Chamber DHCAL: 
in test beam for ~ 1 year, data 
analysis ongoing 
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Resistive paint 
Mylar  

1.2mm gas 
gap 

Aluminum 
foil 

1.1mm glass 

1.1mm glass 

Signal pads 

HV 

ASIC 
Front-End 

PCB 

Pad Board 
Conductive Epoxy Glue 

Communicati
on Link 

8.6 
mm 

Fishing line 
spacers 
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Integrated electronics 
New era for chip design:  

• Integration of analog and digital parts 
• Large dynamic range (15 bits)  
• Auto-trigger on ½ MIP (specific of ILC) 
• On chip zero suppress 
• Front-end embedded in detector è Ultra-low power<<25μW/ch 
• 108 channels 
• Compactness 

 
 



Track multiplicity 

20 GeV π 

High granularity allows to reconstruct 
isolated parts of secondary particles 
in the shower 
 
• Number of track segments 
underestimated by all models 
• Similar result obtained for the 
mean track length 
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